Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий и. другие элементы II IB группы

    Элементы бор, алюминий, галлий, индий и таллий. Строение их атомов и внешняя электронная оболочка. Отличие бора от других элементов группы. [c.219]

    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]


    Хотя бор расположен в третьей группе периодической системы, он по своим свойствам наиболее сходен не с другими элементами этой группы, а с элементом четвертой группы — кремнием. В этом проявляется диагональное сходство , уже отмечавшееся при рассмотрении бериллия. Так, бор, подобно кремнию, образует слабые кислоты, не проявляющие амфотерных свойств, тогда как А1(0Н)з — амфотериое основание. Соединения бора и кремния с водородом, в отличие от твердого гидрида алюминия, — летучие вещества, самопроизвольно воспламеняющиеся на воздухе. Как и кремнии, бор образует соединения с металлами, многие из которых отличаются большой твердостью и высокими температурами плавления. [c.630]

    По своим химическим свойствам бериллий в значительной степени сходен с алюминием, находящимся в третьем периоде и в третьей группе периодической системы, т. е. правее и ниже бериллия. Это явление диагонального сходства мы уже упоминали при сравнении свойств лития и магния, оно наблюдается и у некоторых других элементов. Например, бор по многим химическим свойствам сходен с кремнием. [c.389]

    Вор входит в главную подгруппу III группы периодической системы элементов и имеет электронную конфигурацию ls 2s 2p под ним расположен алюминий. Во втором периоде при переходе от бора к углероду радиусы ромов уменьшаются, а в IV группе при переходе от углерода к кремнию — увеличиваются. Поэтому радиусы атомов бора и кремния близки. Бор существенно отличается от алюминия и обнаруживает большое сходство с кремнием. Бор образует три ковалентные связи с атомами других элементов. В зависимости от природы последних атом бора может образовать еще одну до-норноакцепторную связь, предоставляя р-орбиталь для электронной пары другого атома. Таким образом, бор в соединениях проявляет валентность, равную трем, или ковалентность, равную четырем. [c.368]

    Как уже ранее указывалось (см. раздел Отделение осаждением ), купферон является одним из наиболее эффективных реагентов для отделения урана методом осаждения. Образующийся купферонат урана (IV) легко растворяется в различных органических растворителях [345]. Экстрагирование урана (IV) в виде купфероната позволяет отделять его от алюминия и некоторых других элементов группы гидроокиси аммония, а также от щелочных и щелочноземельных металлов и ряда элементов группы сульфида аммония. [c.306]

    По кислотно-основному механизму идут каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, крекинга, алкилирования, изомеризации и др. Типичные катализаторы для кислотно-основного взаимодействия — кислоты и основания. Активными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других. элементов, обладающих кислотными свойсгвами, или соединения элементов 1 и 2 групп периодической системы, обладающих основными свойствами. [c.27]


    Большинство упомянутых элементов замещает в кристаллической решетке сподумена литий. При оценке заместителей лития в структуре сподумена следует иметь в виду то, что литий обнаруживает сходство не только с ближайшим соседом по группе — натрием, но и с элементами соседней группы, прежде всего с магнием и кальцием. Это понятно, если учесть, что ионный радиус лития лишь на 5% отличается от ионного радиуса магния и его величина, таким образом, находится в пределах 0,7—0,9 А (аналогично радиусам циркония, гафния, олова, железа и других элементов). В ряде случаев в структуре сподумена замещается алюминий. [c.182]

    Затем заменяют планшет № 15 на планшет № 19, где дан участок спектра железа в области 3750—4050 А, и, как описано выше, ищут в спектре исследуемой пробы линию алюминия X = 3944,0 А, которая располагается между линиями железа X = 3930,2 и 3950,0 А, и линию X = = 3961,5 А — между линиями железа X = 3956,6 и 3966,0 А (рис. 91,6). Таким же образом устанавливают в спектре пробы другие элементы третьей аналитической группы. [c.238]

    Определение по разности. В классическом методе определения алюминия в силикатных породах железо, алюминий и другие элементы группы аммония осаждают вместе и взвешивают в виде смешанных окислов . Присутствующие в этом осадке элементы, кроме алюминия, определяют отдельно, а содержание алюминия рассчитывают ио разности. Этот метод детально описан в гл. 4. Он включает точное определение железа, титана, ванадия, хрома, фосфатов и той части марганца (а также никеля, если он присутствует в количествах больших, чем следовые), которая осаждается с элементами группы аммония. [c.94]

    Метод основан на том, что железо, алюминий и другие элементы группы полуторных окислов в присутствии в растворе достаточного количества винной (лимонной) кислоты не осаждаются аммиаком. При пропускании через такой раствор сероводорода комплексное соединение железа с винной кислотой разрушается с образованием нерастворимого сульфида ГеЗ, тогда как алюминий и другие элементы остаются в растворе. [c.26]

    К синтетическим неорганическим сорбентам, обладающим способностью к ионному обмену, относятся силикагель, алюмосиликаты, труднорастворимые оксиды и гидроксиды ряда металлов (алюминия, хрома, олова, циркония, тория, титана и др.), полимерные соли циркония, титана и других элементов, соли гетерополикислот. Неорганические синтетические иониты отличаются большим разнообразием свойств, для них хара стерно селективное поглощение отдельных ионов из их смесей в растворах. В отличие от природных минеральных сорбентов, синтетические обладают в ряде случаев значительно большей на-бухаемостью в воде и водных растворах, что увеличивает степень участия ионогенных групп в сорбционном процессе. [c.41]

    Сероводород может быть применен для отделения урана от других элементов осаждением их в виде сульфидов в тех условиях, в которых уран сероводородом не осаждается. Таким путем уран можно отделить от элементов группы сероводорода осаждением их из кислого раствора. Отделение урана от элементов группы мышьяка может быть достигнуто осаждением урана сульфидом аммония. Так как в присутствии карбоната аммония уран сульфидом аммония не осаждается, то осаждением из карбонатных растворов можно отделить уран от железа, алюминия, титана и ряда других элементов. [c.279]

    Металлохимия лития. По металлохимическим свойствам литий также отличен от других элементов 1А-группы. Объясняется это аномально малой плотностью, резким увеличением температуры плавления в направлении от натрия к литию, а также размерными факторами. Так, литий при сплавлении со своими групповыми аналогами (1А-группа) дает расслоение. В противоположность другим металлам 1А-группы литий не образует металлидов с металлами подгруппы меди. Литий с алюминием образует интерметаллические соединения, тогда как остальные металлы Ь -группы не смешиваются с алюминием в расплавленном состоянии. В то же время все металлы 1А-группы, включая литий, хорошо образуют амальгамы. Кроме того, однотипный характер имеет взаимодействие металлов 1 А-группы с Ga, In, Pb и Sn. [c.306]

    Большие количества меди, кобальта и цинка замедляют осаждение никеля. Присутствие многих других элементов не препятствует применению гравиметрического метода. Перед осаждением диметилглиоксимата никеля к кислому раствору добавляют винную кислоту для связывания в прочные растворимые комплексные соединения элементов, дающих гидроксиды в аммиачной среде. Ионы алюминия, марганца, железа, титана, хрома и других металлов замещают атомы водорода карбоксильных и гидроксильных групп винной кислоты  [c.78]

    При обработке водой 11,6 г смеси фосфида алюминия и сульфида другого элемента П1 группы с равными массовыми долями образовался осадок массой 7,8 г и выделилось 5,43 л газовой смеси (н. у.) с плотностью по гелию 8,5. Установите, какой элемент входит в состав сульфида. [c.232]


    Ксиленоловый оранжевый [7] является наиболее хорошо изученным реагентом этой группы и применяется для определения ниобия [8—10], циркония [11—13], суммы [14] и индивидуальных редкоземельных элементов [15, 16], скандия [17], индия [18], урана, тория, висмута, железа, алюминия, молибдена, фтора и других элементов. [c.125]

    Сплавы, применяемые в литом состоянии. К этой группе магнитотвердых материалов относятся а-сплавы системы железо — никель алюминий, а также их модификации, получаемые за счет введения в них кремния, меди, кобальта и других элементов. [c.560]

    В табл. 111,10 представлены для некоторых сочетаний моноокисей разных элементов третьей группы периодической системы значения a5(Sr —Sms) при одинаковых температурах. Эти значения для моноокисей галлия и алюминия в интервале от 400 до 2000 К изменяются от 1,045 до 1,021, т. е. на 0,024, причем с повы-щением температуры as изменяется меньше. При расчете Sr — S298 для моноокиси галлия при Т = 2000 К по данным для Т = 400 К с учетом, что для А10 Sr — S29s= 16,22 кал/К-моль, получаем ошибку всего 0,024-16,22 = 0,35 кал/К-моль. Подобные же результаты получаются и для моноокисей других элементов третьей группы (см. табл. HI, 10). [c.111]

    Понятно, что при определении алюминия по разности все ошибки анализа, связанные с определением железа и других элементов группы К2О3, будут отражаться на величине АЬОз. В случае, например, содержания больших количеств железа и малых алюминия, сравпите.льно небольшая ошибка в определении железа вызовет большую ошибку в определении алюминия. Кроме того, если определяются не все из присутствующих, а только некоторые элементы группы полуторных окислов, вычисленный результат будет представлять сумму А12О3 и неучтенных окислов. [c.57]

    В 4 кратко обсуждается влияние электростатического кристаллического поля на орбитальные и спиновые состояния магнитно-активных /- и -ионов в решетке сплава. Два следующих параграфа ( 5 и 6) являются центральными в обзоре, в них дается уже достаточно подробное описание свойств интерметал-лидов РЗМ и некоторая теоретическая их интерпретация (используется материал, изложенный в 2 и 3). В начале этой части обзора приводятся данные о бинарных сплавах РЗМ с алюминием (RA1 ), а также с другими элементами группы П1В таблицы Менделеева (Ga, In). Особенно подробно обсуждаются интерметаллиды RAb (менее подробно RA1 и R2AI3 и совсем кратко соединения с Ga и 1п). На примере соединения RAI2 читатель как бы входцт в мир тех понятий и представлений, которые сейчас уже широко бытуют среди специалистов, изучающих сплавы РЗМ. [c.6]

    Бериллий во многом сходен с алюминием (диагональное сходство в периодической системе). Радиус атома и иона бериллия значительно меньше в сравнении с другими -элементами группы. Соответственно энергия ионизации атома бериллия существенно выше, чем у остальных -элементов ПА-группы. В отличие от магния и щелочно-земельных металлов бериллий является амфотерным элементом, для него хдракт.ерна в значительной степени ковалентная связь с атомами других элементов. В обычных условиях бериллий образует не простые, а комплексные ионы. В ряду Ве + — Мд " " — Са + — Зг — Ва прочность комплексов с кислородсодержащими и другими лигандами уменьшается  [c.242]

    МОНОМЕРЫ — низкомолекулярные соединения, применяемые для синтеза высокомолекулярных соединении (полимеров). М. обладают способностью к полигиеризации благодаря наличию в них различных функциональных групп (двойных и тройных связей, альдегидной и гидроксильной групп и др.). Для производства полимеров большое значение имеет чистота М. Из М., содержащих в своем составе атомы кремния, алюминия, титана, олова и других элементов, получают так называемые эле-ментоорганические полимеры, которые имеют большое практическое значение. [c.164]

    Бериллий, магний, алюминий и некоторые другие элементы третьей группы, первой и второй побочных подгрупп образуют полимерные гидриды (BeH2)i, (А1Нз)у,. .. Образование полимеров осуществляется за счет химических связей с участием мостикового (например, Ве-Н--Ве) атома водорода. Эти гидриды разлагаются на простые вещества при небольшом нагревании. [c.344]

    У карбидов единственной фазой, в которой соблюдаются обычные валентные отношения, является карбид кремния 81С — типичное ковалентное соединение, в котором атомы 81 и С находятся в состоянии вр -гибридизации. Кроме того, правилу формальной валентности подчиняются карбиды алюминия А14С13 и бериллия ВегС, которые можно рассматривать как производные метана. Некоторые карбиды трактуют как производные ацетилена (ацетилениды). Наиболее известен среди них карбид кальция СаСг. Карбиды такого же состава образуют и другие элементы ПА-группы, кроме бериллия (Mg 2, 8гСг, ВаСг). [c.278]

    Указанное число валентных электронов еще не обеспечивает металлоидные сво1ктва элементов III группы они в основном еще сохраняют металлическую природу. Однако возросшее число валентных электронов вызывает определенный сдвиг в свойствах этих элементов в сторону металлОидности. Так, среди элементов III группы уже появляется металлоид — бор. Металл алюминий проявляет амфотерные свойства. Все другие элементы, хотя н сохраняют свою металлическую природу, но атомы их более электронофильны, чем атомы элементов I и II групп тех же периодов. Так, восстановительная способность атомов элементов III группы (т. е. их электронодонорная функция) несколько понижена, а окислительная способность их ионов (т. е. электроноакцепторная функция) повышена. [c.419]

    В качестве примера могут быть приведены исследования Б. П. Живописцева и Л. А. Минина [8], касающиеся анализа такой части встречающейся группы элементов, как железо, титан, алюминий, хром. Если провести предварительное окисление хрома до хромата, то, как только что было указано, хром можно отделить от других элементов в слабосернокислом растворе в присутствии небольших количеств хлористого натрия. После отделения [c.139]


Смотреть страницы где упоминается термин Алюминий и. другие элементы II IB группы: [c.344]    [c.54]    [c.428]    [c.151]    [c.239]    [c.212]    [c.194]    [c.285]    [c.78]    [c.26]    [c.163]    [c.182]    [c.237]    [c.163]    [c.25]   
Смотреть главы в:

Интерметаллические соединения редкоземельных металлов -> Алюминий и. другие элементы II IB группы




ПОИСК





Смотрите так же термины и статьи:

Алюминий—элемент

Элемент группы



© 2024 chem21.info Реклама на сайте