Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные методы исследования спектров ЯМР высокого разрешения

    Экспериментальные методы исследования спектров ЯМР высокого разрешения [c.310]

    В предыдущем разделе рассмотрена основная часть экспериментальных данных, полученных к настоящему времени методом спектроскопии КР высокого разрешения. Эти данные включают ряд вращательных постоянных и постоянных центробежного искажения для основного и некоторых возбужденных состояний молекул, а также коэффициенты кориолисова взаимодействия для молекул типа симметричного и сферического волчков. Целью изучения спектров комбинационного рассеяния является определение структурных и динамических параметров этих молекул путем независимых спектральных исследований, что позволит дополнить информацию, получаемую методами инфракрасной и микроволновой спектроскопии, а также электронографическим методом. [c.263]


    Оптические методы исследования дают относительно ограниченную информацию о спектре колебаний решётки. Так, высоко прецизионные рамановские измерения первого порядка позволяют изучать только оптические фононы вблизи центра зоны Бриллюэна. А такие методы, как инфракрасное поглощение, фотолюминесценция или рамановское рассеяние второго порядка являются косвенными и неточными измерениями энергий и ширин фононов в симметричных точках зоны Бриллюэна. Неупругое рассеяние нейтронов потенциально может дать полную информацию о колебательном спектре кристалла. Но пока ещё слабое экспериментальное разрешение этого метода не позволяет широко использовать его для исследований изотопических эффектов. Однако в случае сильного изотопического беспорядка современные установки позволяют получить количественную информацию. Так, недавно влияние изотопического беспорядка на энергии и ширины линий фононов в Ge было предметом исследований в работах [112, 113]. Такие измерения представляются особо интересными с академической точки зрения, поскольку позволяют сделать простую проверку теоретических моделей, широко используемых для описания разупорядоченных систем, таких, например, как приближение когерентного потенциала. [c.74]

    Требования к экспериментальной технике, используемой при изучении комбинационного рассеяния света, определяются в основном необходимыми степенью разрешения и точностью определения волновых чисел при рещении конкретных задач. Разрешение вращательной тонкой структуры и высокая точность определения волновых чисел для данной полосы КР, которая может простираться на несколько сотен обратных сантиметров, представляют значительные трудности для исследователя, поскольку интенсивность полос КР, как правило, низкая. Оставляя в стороне основные ограничения метода, попытаемся оценить эффективный предел разрешения, сравнив его с эквивалентной величиной, достигаемой в ИК-спектроскопии это позволит сочетать с одинаковой доверительностью данные обоих методов (ИК-спектры поглощения и спектры КР) для определения структуры молекул. Если принять значения 6v = 0,02 см как желаемый предел разрешения в видимой области, скажем, при К 5000 А, то эффективная разрешающая способность используемой аппаратуры должна достигать 10 . [Для примера, значения 6v 0,03 и 0,025 см в области 3 мкм обеспечиваются ИК-спектрометром с дифракционной решеткой, а 6v 0,006 см- достигается в области 2 мкм с интерферометром Майкельсона (фурье-спектроско-пия) [73—75].] Более того, необходимо одновременно достичь высокой точности определения волновых чисел (по крайней мере высокой относительной точности) в широкой спектральной области (хорошо разрешенный спектр с плохо определенными волновыми числами абсолютно бесполезен для структурных исследований). Все это предъявляет высокие требования к спектрометру, источнику излучения, давлению и температуре, при которой исследуется газ. В чем же заключается искусство экспериментатора и каковы возможные пути его совершенствования  [c.185]


    Хорошо известно, что анализ энергетических уровней при помощи спектроскопических методов проводится весьма успешно, тогда как исследование интенсивности оставляет желать лучшего. Это обусловлено двумя причинами. Довольно трудно измерять интенсивность с точностью, позволяющей определить вероятности переходов с ошибкой, допустим, менее 10%. Эти экспериментальные трудности усугубляются сложностью теории излучательных переходов. Тем не менее к настоящему времени собрано значительное количество данных по интенсивности в спектрах КР для ряда многоатомных молекул. В этом разделе мы хотим очень кратко рассмотреть проблемы, связанные с определением среднего значения и анизотропии молекулярной поляризуемости, степени деполяризации, а также ширины линий КР, поскольку эти вопросы имеют непосредственное отношение к спектроскопии высокого разрешения. [c.316]

    Спектроскопия фотоэлектронов зародилась по существу еще в 20-х годах, когда в 1914 г. Робинсон в Англии и в 1921 г. М. де Бройль во Франции провели первые исследования энергетического спектра электронов, выбиваемых из атомов различных элементов рентгеновским излучением. Однако только в последние 10—15 лет в связи с появлением аппаратуры с очень высоким разрешением метод реально стал одним из важных разделов спектроскопии. Особенно ценны заслуги в этом шведской группы физиков, возглавляемой К. Зигбаном. Они назвали свой метод ЭСХА — Электронная спектроскопия для химического анализа . Уже само название разработанного ими метода свидетельствует о том, что новый физический метод предназначается в основном для различных химических исследований. Этот метод бесспорно может быть использован для изучения целого ряда химических процессов, в частности процессов, происходящих на поверхностях (окисление, катализ, адсорбция и т. д.), но главное его достоинство состоит в том, что он позволяет изучать электронную структуру вещества. Фотоэлектронная спектроскопия (ФЭС) может быть по праву названа экспериментальной квантовой химией . Применение наряду с квантово-механическими расчетами электронного строения молекул спектроскопии фотоэлектронов, несомненно, будет способствовать развитию ряда направлений современной структурной химии. [c.5]

    Теоретические и экспериментальные исследования спектров макромолекул, проведенные в последние годы, позволили получить некоторые важные данные о физических свойствах и структуре полимеров. Так, при помощи анализа нормальных колебаний было окончательно установлено строение макромолекул таких полимеров, как полиоксиэтилен [18, 19], полиаллен [8], поли-диоксолан [48], полиакрилонитрил [49], пентон [50], причем данные по строению этих полимеров не удавалось получить другими методами структурного анализа. Одним из ярких примеров успеха метода колебательной спектроскопии является окончательное установление структуры макромолекул полиакрилонитрила [49]. Рентгеновскими исследованиями кристаллов этого полихмера [29, 30] и изучением ЯМР-спектров высокого разрешения растворов не удавалось определить конфигурацию и конформацию цепи ПАН. В 1964 г. был проведен расчет частот и форм нормальных колебаний для плоской син-диотактической модели ПАН и его дейтеропроизводных и результаты расчета сравнивались с экспериментальными спектрами [47]. Однако полного совпадения рассчитанных и наблюдаемых спектров получено не было. В 1965 г. Кримм и др. вычислили колебательный спектр различных моделей ПАН — спиральной изотактической, спиральной синдиотактической и плоской зигзагообразной синдиотактической [49]. [c.260]

    Спектроскопия ядерного магнитного резонанса (ЯМР) является одним из самых молодых физических методов исследования органических соединений. Впервые явление ЯМР было экспериментально обнаружено в 1945 г., хотя теоретически оно было предсказано значительно раньше [1]. Практическое использование спектроскопии ЯМР для исследования строения сложных органических соеди-нениЁ стало возможным лишь после того, как в 1951 г. было обнаружено, что спектр этилового спирта состоит из трех отдельных сигналов, соответствуюш,их резонансу протонов метильной, метиленовой и гидроксильной групп [2], и что сигналы различных групп магнитных ядер в молекулах жидкостей проявляют более тонкое расш епле-ние, зависящее от числа и характера ядер, содержащихся в молекуле [5]. Ядерный резонанс жидких веществ или растворов, позволяющий исследовать число, положение и интенсивность линии в спектре, получил название ЯМР-спектроскопии высокого разрешения, в отличие от резонанса твердых веществ, называемого ЯМР-спектроскопией широких линий. В настоящее время к спектрам ЯМР высокого разрешения принято относить главным образом такие спектры, в которых ширина отдельных линий не превышает нескольких герц. Нет сомнения, что такое определение — не окончательное и в недалеком будущем требования к спектрам высокого разрешения станут еще более жесткими. [c.5]


    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    Самый простой способ использования любого физического метода исследования состоит в идентификации finger-print области спектра (или области отпечатков пальцев ), т. е. в идентификации вещества или определении его чистоты но характерному для данного соединения спектру поглощения или испускания (либо по характерной дифракционной картине). В этом отношении некоторые методы оказываются наиболее ценными чем большее число наблюдений можно получить в результате эксперимента, чем выше разрешение и чем в большей степени данный метод включает взаимодействие излучения со всей молекулой в целом, тем более ценным он оказывается, конечно, при условии, что метод достаточно прост в экспериментальном отношении и доступен с точки зрения стоимости исследования. Обычно в качестве надежного метода определения отпечатков пальцев соединения применяют ИК-спектроско-пию, поскольку этот метод позволяет обнаружить колебания, относящиеся к любым отдельным частям молекулы, тогда как в электронных спектрах поглощения часто проявляются только те переходы, которые связаны со сравнительно небольшой областью в молекуле вследствие этого данный метод может оказаться нечувствительным к изменениям в остальных частях молекулы. Из числа методов, пригодных для качественного анализа, некоторые могут быть использованы и для получения количественных данных, причем ценность представляют лишь те методы, в которых возможно определение коэффициентов экстинкции. В этом отношении наиболее надежен метод электронной спектроскопии поглощения, что определяется его высокой чувствительностью и легкостью приготовления растворов для исследования. [c.399]

    Е. Куприянов. Из исследований спектров диссоциации И0Н01В в результате соударений с атомами и молекулами видно, что при распаде возбужденных ионов, например СгН с образованием С2Н2 происходит отрыв молекул Н2 и двух атомов Н примерно в равных количествах. Это же следовало и из докладов о реакциях горячих атомов с молекулами и о прямом молекулярном распаде углеводородов при высокой температуре, а также из некоторых фотохимических работ. Из нащих данных вытекает, что отрыв двух атомов водорода осуществляется в основном путем последовательного отрыва, а не одновременно. Отрыв первого атома Н происходит достаточно быстро, по крайней мере не медленнее, чем разрыв связи С—С. Отрыв большого числа атомов Н протекает за большее время, так как это ступенчатый процесс. Ионы, образованные разрывом связи С—С, распадаются также путем быстрых и медленных процессов. Исследование спектров диссоциации ионов дает один из экспериментальных методов определения времени распада возбужденных ионов. Есть основания ожидать, что этим путем можно получить разрешение по времени сек. [c.28]


Смотреть страницы где упоминается термин Экспериментальные методы исследования спектров ЯМР высокого разрешения: [c.359]    [c.287]    [c.296]   
Смотреть главы в:

Экспериментальные методы в адсорбции и молекулярной хроматографии -> Экспериментальные методы исследования спектров ЯМР высокого разрешения




ПОИСК





Смотрите так же термины и статьи:

Высокого разрешения спектры

Экспериментальные методы исследования спектров ЭПР

спектр исследование методом ЯМР



© 2025 chem21.info Реклама на сайте