Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы по ионизации пламени

    Хроматограф состоит из последовательно соединенных осушительной системы, пиролитической ячейки 4, вмонтированной в корпус термостата хроматографа, испарительной камеры ввода пробы 5. хроматографической колонки 6, установленной в термостате, детектора 7. Детектирующее устройство работает по принципу ионизации органических молекул в водородном пламени и носит название пламенно-ионизационного детектора (ПИД). Пламя создается при равномерном горении смеси водорода и воздуха, подаваемой из баллонов 2 и 3 форсунке в требуемом соотношении, которое регулируется расходомерами по показаниям манометров. Водородно-воздушная смесь поджигается высокочастотным электрическим разрядом. [c.249]


    Детектор ионизации пламени с щелочным металлом — термоионный ( натриевый или фосфорный ) (ТИД) — является селективным детектором к соединениям фосфора, азота, мышьяка, галогенов (кроме Р), олова и серы. Действие его основано на увеличении ионизации солей щелочных металлов в пламени водорода при попадании в него элементоорганических соединений, В упрощенном виде механизм ионизации можно представить следующим образом. При введении нейтральных молекул соли щелочного металла в пламя Нг происходит их ионизация, в результате чего резко увеличивается фоновый ток. Анализируемая молекула в пламени водорода разрушается с образованием радикалов с гетероатомами, взаимодействие которых с заряженными комплексами солей щелочных металлов приводит к резкому увеличению скорости образования ионов, что в конечном итоге вызывает дополнительное ионообразование элементоорганических соединений. [c.356]

    Широкое распространение получили ионизационные детекторы, отличающиеся исключительной чувствительностью и стабильностью нулевой линии. Принцип действия детекторов этого тина состоит в измерении ионизационного тока между электродами, к которым приложено напряжение. Проводником является газ, а источником ионизации — пламя или радиоактивное излучение. [c.71]

    Применяются пламенно-ионизационные детекторы (рис. 98). В данном случае в качестве возбудителя ионизации используется водородное пламя горелки. [c.227]

    Пламенно-ионизационный детектор (ПИД). Работа ПИД основана на том, что органические вещества, попадая в пламя водородной горелки, подвергаются ионизации, вследствие чего в камере детектора, являющейся одновременно ионизационной камерой, возникает ток ионизации, сила которого пропорциональна количеству заряженных частиц. Предполагалось, что механизм образования заряженных частиц в пламени водорода основан на термической ионизации. Однако некоторые данные показывают, что роль термической ионизации в общем механизме ионизации, по-видимому, невелика. [c.186]

    Принцип метода заключается в следующем раствор распыляют с помощью сжатого воздуха в пламя горелки, где происходит ряд сложных процессов, в результате которых образуются атомы или молекулы. Их излучение направляют в спектральный прибор, где излучение определяемого элемента выделяют светофильтрами или другим монохроматором. Попадая на детектор, излучение вызывает фототок, который после усиления измеряют регистрирующим прибором. Градуировочные графики строят в координатах величина фототока (мкА) — концентрация элемента в раство ре с (мкг/мл). Зависимость между интенсивностью излучения / и концентрацией элемента в растворе аппроксимируется прямой линией в определенной для каждого элемента области концентраций и зависит от спектральной линии, аппаратуры и условий работы. Отклонение от линейности наблюдается в области больщих (например, более 100 мкг/мл для калия) и малых концентраций. В первом случае происходит самопоглощение света невозбужденными атомами, во втором — уменьщается доля свободных атомов за счет смещения равновесия реакции ионизации атомов. [c.11]


    В цепь электродов включено входное измерительное сопротивление, на котором создается падение напряжения, пропорциональное ионному току. Оно измеряется самопишущим потенциометром через усилитель постоянного тока с высоким входным сопротивлением. Показания самопишущего потенциометра пропорциональны ионному току, протекающему через детектор. Количество электричества, образующегося в результате ионизации, прямо пропорционально количеству органического вещества, поступающего в пламя таким образом ионный ток (в а) можно определить по формуле [c.178]

    Другой широко распространенной группой детекторов, применяющихся во многих марках газовых хроматографов, являются детекторы, действие которых основано на измерении тока, з/ юат проходящего через ионизированный газ между двумя электродами. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме либо в пламени при наличии электрического поля или под действием радиоактивного излучения. Наиболее распространен пламенно-ионизационный детектор. Работа его основана на том, что пламя чистого водорода почти не содержит ионов и поэтому обладает очень малой электропроводностью (фоновый ток порядка Ю А). При наличии газов или паров анализируемых веществ (за исключением СО, СО2, OS, Sj, H.jS, О2, Н2О, инертных газов) происходит ионизация пламени, возникают ионы и радикалы, электропроводность пламени резко возрастает (ток порядка 10- А), что и служит индикатором на присутствие в газе-носителе анализируемых веществ. Схема одного из пламенно-ионизационных детекторов приведена на рис. 38. Элюат смешивают с водородом и подают в сопло горелки, куда поступает очищенный воздух. Горение [c.93]

    Детектор представляет собой камеру (рис. П.27), в которой поддерживается водородное пламя, являющееся источником ионизации. В камеру вводятся необходимые для поддержания пламени [c.52]

    Детектор представляет собой камеру, в которой поддерживается водородное пламя, являющееся источником ионизации. [c.355]

    Принцип работы пламенно-ионизационного детектора, описанного впервые Мак-Уильямом и Дьюаром (1958), основан на обнаружении ионов, возникающих вследствие термической ионизации при сгорании органических -молекул вымываемых из олонки. Водородное пламя помещают в электрическом поле, так что образующиеся ионы достигают электродов. Водород выходит из сопла на конце колонки вместе с газом-носителем. Сопло и электроды находятся в закрытом корпусе, в который подается также воздух, необходимый для сгорания водорода. Величина ионизационного тока в момент времени t выражается как [c.128]

    Детектор представляет собой камеру (рис. 14), в которой поддерживается водородное пламя, являющееся источником ионизации. В камеру вводятся необходимые для поддержания пламени водород и воздух водород подается в детектор в смеси с газом-носителем через канал горелки, а воздух - через другой канал и распределяется равномерно диффузором. Горелка является одним из электродов, она изолирована от корпуса детектора и соединена с источником стабилизированного напряжения. Второй электрод, называемый коллектором, расположен над горелкой. Во внешнюю цепь электрода детектора включен электрометр, измеряющий ток между электродами детектора. [c.79]

    Идеальными требованиями для детектора являются высокая чувствительность к присутствию компонента в газе-носителе, малая инерционность, линейность отклонения, независимость от изменения таких рабочих условий, как давление и скорость газового потока, хорошая устойчивость нулевой линии, простота конструкции и вспомогательных устройств, прочность и низкая стоимость. Регистрация по теплопроводности и по ионизации Р-лучами — это, по-видимому, два наиболее пригодных для широкого применения в обычных лабораториях способа. Однако применяются и другие детекторы весы для определения плотности газов, водородное пламя, а также непосредственное измерение объема газа после поглощения газа-носителя. [c.319]

    Ионизационные детекторы измеряют увеличение силы тока при ионизации элюируемых вешеств. Ионы, ответственные за увеличение тока, возникают при сгорании веществ в водородном пламени. Сила тока, возникающего между двумя противоположно заряженными электродами, приблизительно пропорциональна числу атомов уг.лерода, поступающих в пламя причины такой закономерности не вполне ясны. Отрицательным электродом обычно служит сопло горелки, а в качестве противо-электрода используют кусочек латунной или платиновой проволоки, расположенный вблизи кончика пламени. [c.527]

    Источником ионизации органических молекул в пламенно-ионизационном детекторе является диффузионное пламя водорода. В процессе ионизации органических молекул в пламенно-ионизационном детекторе образуется по меньшей мере три типа носителей зарядов электрон и однозарядные положительные и отрицательные ионы. Процесс собирания ионов при малой, средней и большой напряженности электрического поля Е рассмотрен в настоящей работе на упрощенной модели диодного пламенно-ионизационного детектора. Последний состоит из двух плоскопараллельных электродов, находящихся друг от друга на расстоянии й, и стороннего источника ионизации молекул в междуэлектродном объеме. При [c.63]


    В пламенно-ионизационных детекторах источником ионизации служит водородное пламя, в котором в присутствии воздуха или кислорода сжигается выходящий из колонки газ. [c.20]

    Термоионный детектор по принципу действия аналогичен пламенно-ионизационно.му. В водородное пламя непрерывно поступает поток ионов щелочных металлов (Сз, Ыа, К). В присутствии этих ионов резко возрастает эффективность ионизации соединений, содержащих атомы некоторых элементов, в частности, азота, фосфора, хлора и др. Поэтому термоионный детектор является селективным по отношению к таким соединениям. [c.75]

    Типичным примером такого детектора является ионизационно-пламенный детектор (а также его вариант — т е р м 0 ионный детектор), в котором водородное пламя служит источником ионизации органических соединений, при этом ток насыщения возрастает пропорционально количеству вещества, поступающего в детектор (рис. 31,6). [c.55]

    Часть электрических зарядов не участвует в образовании сигнала (ионного тока) из-за утечки зарядов на корпус детектора и зажигающий элемент. Наиболее полный сбор зарядов достигается при наибольшей напряженности поля у среза горелки в зоне ионизации. Этому условию отвечает применение электрода-коллектора в форме цилиндра, когда плоскость его нижнего среза на 1—2 мм выше горелки, расположенной по оси цилиндра. При этом пламя находится практически внутри цилиндра. Такая система электродов обеспечивает не только высокую чувствительность, но и наиболее широкий линейный диапазон (увеличение максимальной концентрации). Излишнее приближение коллектора к горелке может вызвать перегрев электрода и эмиссию положительных ионов с его поверхности. Для исклю ения этого на коллектор должен быть подан отрицательный потенциал. С другой стороны, отрицательный потенциал на горелке препятствует рекомбинации положительных ионов и обеспечивает их полный сбор. При оптимальном выборе конструкции и положения электродов ток насыщения практически одинаков при любой полярности электродов. [c.64]

    Вместо пористого носителя с успехом используются т акже свернутые в компактные мотки капиллярные трубки диаметром около 0,1 ллг и до 1 км длиной. Это могут быть стеклянные, стальные, медные, алюминиевые, нейлоновые трубки. Их наполняют раствором будущего неподвижного растворителя, например, вазелинового масла, в какой-нибудь подходящей летучей жидкости, например в эфире. Последний потом испаряется при нагревании трубки, оставляя на ее поверхности слой неподвижной фазы , толщиной в несколько десятых долей микрона. Для анализа берут пробы, содержащие не больше нескольких микрограмм исследуемых веществ. Эти пробы вводятся в поток газа-носителя в капилляре. Газом-носителем часто служат азот, аргон, гелий. При контакте паро-газовой смеси с пленкой жидкости, покрывающей стенки капилляра, происходит процесс распределения между газом и жидкостью и анализируемые вещества в капилляре разделяются. По выходе из капилляра они попадают в анализатор, например ионизационный детектор, где имеется несколько милликюри радиоактивного вещества, излучающего р-частицы. Внутри детектора находятся электроды под напряжением в несколько сот вольт. В этих условиях происходит ионизация молекул анализируемых веществ и между электродами протекает ток, по силе которого измеряют количество проходящих через детектор веществ. Особенно хорошие результаты получаются при применении в качестве газа-носителя аргона или гелия. Атомы этих газов при радиоактивном облучении переходят в возбужденное состояние, а возбужденные атомы вызывают ионизацию молекул анализируемых веществ, если энергия их ионизации меньше энергии возбуждения атома. Благодаря этому аргоновым детектором можно измерять концентрацию кислорода, азота, паров воды и углекислого газа и многих других газов. Гелиевый детектор позволяет определять азот, кислород, водород. Чувствительность определения достигает 10" %. Очень удобен пламенно-ионизационный детектор, хотя он несколько менее чувствителен, чем ионизационный. В нем сжигают водород, пламя которого почти не ионизовано. Но, если в это пламя попадают примеси [c.300]

    Наибольшей чувствительностью обладают ионизационные или пламенно-ионизационные детекторы, позволяющие обнаружить 10 моля примесей. В пламенноионизационных детекторах измеряют электрическую проводимость пламени водородной горелки. Чисто водородное пламя обладает очень низкой электрической проводимостью. При появлении в водороде многих примесей происходит ионизация пламени, пропорциональная концентрации примеси, что легко может быть измерено. Высокая чувствительность детекторов этого типа обусловила их широкое применение. [c.158]

    Наибольшей чувствительностью обладает ионизационный детектор, или детектор ионизации в пламени (ДИП), позволяющий обнаружить моль примесей. В пламенно-ионизационных детекторах измеряют элекфическую проводимость пламени водородной горелки. Чисто водородное пламя обладает очень низкой элекфической проводимостью. При появлении в [c.296]

    Ионизационный пламенный детектор. Детекторы такого типа вмонтированы в хроматографы, выпускаемые в Чехословакии. Впервые ионизационный пламенный детектор был сконструирован Мэк Бильем и Дюаром , а также Харлеем с сотрудниками . В данном случае используют в качестве возбудителя ионизации пламя горелки, аналогичной горелке Скотта. В пламя вставлены два электрода из платиновой проволоки, на которые при помощи анодной батареи подается постоянное напряжение, В случае применения азота к нему добавляют водород, а при использовании в качестве газа-носителя водорода добавляют азот. Смешивание газов происходит непосредственно перед горелкой. [c.99]

    В некоторых моделях зарубежных хроматографов измерительные схемы детекторов ионизации в пламени содержат систему контроля горения водорода. В настоящее время почти во всех потоковых хроматографах применяется ручная система поджигания водорода, поскольку в этом случае легче обнаружить и устранить причины, мешающие горению. В газовых линиях, соединяющих детектор с внешней средой, устанавливают огнепреградительные элементы, гасящие пламя при взрыве водорода внутри детектора. [c.109]

    Типичным примером такого детектора является ионизационнопламенный детектор (а также его вариант — термоионный детектор), в котором водородное пламя служит источником ионизации органических соединений при этом ток насыщения возра- [c.50]

    В детекторе ио ионизации пламени анализируемые нсщестна, выходя из колонки с током газа-носителя, попадают в пламя водородной горелки. В результате термической диссоциации соединения в пламени образуются ионы. Концентрация иоков прямо пропорциональна количеству углерода, входящего в состав молекулы. Концентрацию ионов определяют, измеряя проводимость пламени. Для этого в детекторе имеется анод и катод, между которыми накладывают высокое напряжение (около 300 В). Измеряя ионный ток, фиксируют прохождение через детектор зоны вещества. Детектор позволяет измерять до 1 нг углерода. Линейная зависимость сигнала детектора охватывает широкий интервал значений (до 100 мкг вещества). Детектор по ионизации пламени чувствителен только к соединениям, ионизирующимся в иламеии, т. е. [c.619]

    Как указывает Калмановский, имеется, однако, различие между прямым окислением без предварительной термической диссоциации и окислением с предшествующей термической диссоциацией молекул углеводородов. В последнем случае образуется существенно больше ионов. Прямое окисление имеет место преимущественно в гомогенном пламени при сгорании смеси водорода с кислородом. Предварительная диссоциация с последующим окислением наблюдается в диффузионном иламени. Это пламя имеет реакционную зону, в которой происходит сгорание выходящего из сопла детектора водорода с диффундирующим извне кислородом. Между этой зоной и холодным ядром пламени из чистого водорода или водорода с газом-носителем находится зона, которая нагревается от горячей реакционной зоны, но не содержит кислорода, так что в ней не происходит сгорания, но, по-видимому, имеет место предварительное термическое разложение молекул углеводородов, выходящих из сопла. При этом образуются углеродсодержащие радикалы, которые, вероятно, находятся в возбужденном состоянии, облегчающем последующую ионизацию. Эти углеводородные радикалы поступают затем в реакционную зону, причем углерод окисляется и ионизируется. Для бензола, например, эти процессы можно представить следующим образом  [c.130]

    При низких напряжениях скорость дрейфа катионов столь незначительна, что только часть их достигает катода, а остальные рекомбинируют. Таким образом, в создании тока при низких напряжениях участвуют не все термически ионизированные атомы углерода, полученные при имеющейся степени ионизации. С увеличением напряжения доля рекомбинирующих ионов уменьшается до тех пор, пока все создаваемые носители заряда не будут достигать электродов. Эта зависимость ионизационного тока от напряжения на электродах может быть объяснена также образованием объемного заряда. При низких напряжениях происходит лишь сдвиг плотности заряда, так как создаваемые положительные ионы вследствие их существенно большей массы в сравнении с электронами медленно движутся к катоду и это приводит к образованию объемного положительного заряда. Благодаря противоположно направленному действию поля этого объемного заряда, возникающего у катода, ионизационный ток ослабляется. С ростом напряжения плотность объемного заряда уменьшается и ионизационный ток возрастает. В режиме насыщения ионизированные атомы углерода, число которых отвечает данной степени ионизации, так быстро достигают электродов, что объемный заряд не может образоваться. Напряжение насыщения зависит как от формы и положения электродов, так и от количества вещества, поступающего в пламя за 1 сек. Обстоятельные исследования этого явления провели Дести, Геч и Голдан (1960). На рис. 22 показаны изменения ионизационного тока при различных количествах вещества и ири применении сеточного электрода с собирающей поверхностью 0,8 см , отстоящего на расстояние 10 мм по вертикали от отрицательно заряженного сопла детектора (рис. 23). При положительно заряженном сопле напряжение насыщения примерно на 20 в выше, так как в этом случае путь положительных ионов к электроду длиннее. Линейный диапазон детектора при объемной скорости водорода 2 л-час ограничен потоком 2,5 10 г-сек . [c.131]

    Практически универсальным и высокочувствит. детектором для орг. соед. является пламенно-ионизациониый Д. X. (ПИД). Относится к числу потоковых. В ПИД происходит ионизация орг. соед. в водородном пламени. В результате между электродами, одним из к-рых служит горелка, а другой расположен над пламенем, резко возрастает электрич. ток, сила к-рого пропорциональна массовой скорости Орг. в-ва, поступающего в пламя детектора. Чувствительность ПИД несколько уменьщается в ряду углеводороды > [c.26]

    В детекторе установлен источник ионизации, которым в случае пламенно-ионизационного детектора является водородное пламя, для ионизации пробы, выходящей из хроматографической колонки и попадающей вместе с газом-носителем в дламя. В детекторе имеется два электрода, потенциальный и коллекторный к первому прикладывается напряжение для сбора ионов, со второго снимается сигнал детектора. [c.162]

    В лабораторной практике распространены пламенно-ионизаци-онные детекторы (рис. 12.7). Газом-носителем служит водород или смесь водорода с другими газами. При сжигании органических веществ анализируемой пробы в токе водорода происходит ионизация межэлектродного пространства. Степень ионизации, а следовательно, и величина сигнала детектора зависят от состава анализируемого газа от соотношения, между количествами подаваемых в горелку водорода и воздуха от расстояния между электродами от напряжения, подаваемого на электроды от конструктивных особенностей горелки. Все это позволяет широко использовать пла-менно-ионизацион-пый детектор при анализе газовых смесей с различным диапазоном концентраций и состава. Пламя в детекторе находится между двумя электродами катодом часто служит сопло горелки, анодом — металлическая сетка или проволока- Поджигают пламя вручную или автоматически. Напряжение на электродах от 90 до 300 В, расстояние между электродами от б до 12 мм, расход водорода 3 л/ч, расход воздуха 15 л/ч. [c.213]

    Действие пламенно-ионизационного детектора связано с ионизацией органических молекул в водородном пламени. Когда органические пары поступают в водородное пламя, проводимость пламени повышается. Обнаружено, что это увеличение проводимости больше предсказываемого на основании ионизационных потенциалов молекул (8—12 эв [7]). Истинный механизм ионизации в пламени недостаточно изучен. Теория, выдвинутая Штерном [14], предполагает, что в пламени образуются агрегаты углеродных атомов, которые ведут себя подобно твердому углероду. Твердый углерод, имеющий чрезвычайно низкую работу выхода (4,3 эв), легко ионизируется в водородном пламени. Наблюдаемая пропорциональность сигнала детектора числу углеродпмх атомов в молекуле подтверждает эту теорию. Следует, однако, изучить промежуточные реакции, предшествующие образованию конечных продуктов горения (СОг и НгО). [c.46]

    Как показано на стр. 398, чувствительность пламенно-ионизационного детектора к таким веществам, как арктон 12 и хлор, повышается с расходом водорода. Таким образом, любые примеси, поступающие в пламя, будут давать большие сигналы, если размер пламени увеличится. При введении 5 мл водорода в газ-носитель сигнал должен повышаться, и поэтому наблюдаемый сигнал может слагаться из сигнала от чистого водорода и сигнала, обусловленного ионизацией примесей в пламени. [c.180]

    Разница между применявшимися до сих пор детекторами и пламенно-ионизационными заключается в том, что последние реагируют не столько на количество анализируемого вещества, сколько на углерод, содержащийся в органическом веществе. Пламя, по возможности, должно быть горячим. Ионизация происходит в уЗК011 светящейся зоне пламени. Пламя должно быть возможно более спокойным. [c.176]

    Принцип действия детектора основан на селективной ионизации молекул органических соединений в пламени водорода. Если сжигать водород в атмосфере кислорода или воздуха, та он практически не образует ионов. Поэтому электропроводность чистого водородного пламени довольно низка [Я 10 Oju). При введении молекул органических соединений в водородное пламя последние легко ионизируются и электропроводность пламени резко возрастает R может уменьшиться до 10 ом). Если между двумя электродами детектора приложить известное напряжение, то можно измерить величину ионизационного тока. Поскольку установлено, что ионизационный ТОК прямо пропорционален количестру органического вещества, поступающего в пламя, можно по величине ионизационного тока определить концентрацию органического вещества в воздухе, предварительно прокалибровав детектор. [c.194]

    Применяют детекторы следующих типов а) термокондуктомет-рические, действие которых основано на сравнении теплопроводностей определяемого компонента и газа-носителя б) плотномерные, сопоставляющие плотности анализируемого компонента и газа-носителя в) электронного захвата, устроенные так, что величина протекающего через них тока уменьшается при возрастании концентрации веществ, молекулы которых обладают сродством к электрону г) пламенно-ионизационные, в которых источником иойизации является водородное пламя д) термоионные — преобразователи ионизации в пламени, в которое непрерывно поступают пары щелочного металла. Действие детекторов трех последних типов основано [c.158]

    В отличие от обычной пламенной фотометрии, пламенно-фотометрический газохроматографический детектор обладает рядом преимуществ. Известно, что при анализе растворов посредством фотометрии пламени, вещества вводятся в нламя в виде аэрозолей, а в пламенно-фотометрическом детекторе используются газообразные образцы. В последнем случае устраняются многие нежелательные процессы — аспирации, десольвации и молекулярного испарения. Когда элюируемые из колонки вещества поступают в водородное пламя, то преобладают процессы диссоциации молекул, ионизации и образования нейтральных атомов. Естественно, что при таких условиях выход эмиссии от возбужденных атомов или фрагментов молекул будет гораздо больше, чем при обычной пламенной фотометрии. Это приводит к увеличению чувствительности. [c.86]

    Действие термоионного детектора (ТИД) основано на увеличении ионизации солей щелочных металлов в пламени водорода при попадании в него элементорганических соединений. Однако сходство термоионного и ионизационно-пламенного детекторов ограничивается чисто внешними признаками, поскольку механизм ионизации и процессы сбора ионов в этих детекторах различны. Процессы 1юнизации в ТИД сосредоточены в зоне самого пламени, тогда как ионизация в ДИП происходит у среза горелки. В упрощенном виде механизм ионизации можно представить следующим образом. При введении нейтральных молекул соли щелочного металла в пламя водорода происходит их ионизация, в результате чего наблюдается резкое увеличение фонового тока (на 2—3 порядка больше, чем у ДИП). Анализируемая молекула в пламени водорода разрушается с образованием радикалов с гетероатомами, взаимодействие которых с заряженными комплексами солей щелочных металлов приводит к резкому увеличению скорости образования ионов, что в конечном итоге вызывает дополнительное ионообразование элементорганических соединений. Лимитирующим [c.73]

    Одной из основных проблем конструктивного решения ячейки термоионного детектора является сравнительно небольшое время работы прессованных таблеток, зондов или электродов с солью щелочного металла, что приводит к непрерывному уменьшению чувствительности детектора по мере убыли соли. В последние годы, однако, найдено несколько вариантов решения этой проблемы. Срок службы солевого наконечника горелки значительно возрастает, если соль щелочного металла (СзВг) спрессовывается при высоком давлении с силикатным наполнителем, например хромо-сорбом. Довольно продолжительную и устойчивую работу показал двухпламенный детектор, в котором над верхней горелкой помещен запаянный платиновый капилляр со щелочью. При нагреве в пламени щелочь диффундирует через стенки капилляра, обеспечивая равномерное поступление в рабочий объем детектора ионов щелочного металла. Весьма оригинальное решение найдено в последней модели однопламенного детектора фирмы Перкин — Эль-мер . Вместо летучей при высоких температурах соли в детекторе в качестве источника ионов щелочного металла использован стеклянный шарик, в котором присутствует рубидий в форме нелетучего силиката. Ионизация такой соли происходит только при попадании в пламя фосфор- или азотсодержащих веществ. Поэтому среди других термоионных детекторов такой его вариант характеризуется длительной работой источника щелочного металла, небольшим фоновым током и низким уровнем шумов. [c.75]


Смотреть страницы где упоминается термин Детекторы по ионизации пламени: [c.130]    [c.160]    [c.331]    [c.10]    [c.127]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы определения диапазона линейности детектора Г ионизации в пламени



© 2024 chem21.info Реклама на сайте