Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы теоретических оценок скоростей химических реакций

    Методы теоретических оценок скоростей химических реакций [c.48]

    Изложению методов расчета скоростей химических реакций и обсуждению той роли, которую играет при этом электронное строение отдельных реагентов, предшествует изложение методов расчета этого строения. Это сделано потому, что расчет волновой функции молеку.чы является наиболее трудоемкой частью исследования, настолько трудоемкой, что именно этот расчетный элемент и определяет, как правило, облик всей теоретической схемы оценки скорости реакции. [c.7]


    От степени протекания обратимых реакций (5.2) и (5.3) зависит уровень, на котором проходит радикально-цепной процесс в целом, и возможные соотношения выходов продуктов. Пределы превращения радикалов в реакциях рекомбинации и диспропорционирования можно определить на основе термодинамического исследования этих реакций. Существуют различные методы оценки констант равновесия химических реакций. Если константы скорости прямой и обратной стадий реакции оцениваются теоретически согласно (2.5), то очевидно, что результат расчета константы равновесия кинетическими методами и статистическая оценка ее должны совпадать. [c.112]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 11р. 11 . Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения природы поляризации используются различные методы. К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Оп основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    Среди эмпирических закономерностей, позволяющих осуществлять количественную или полуколичественную оценку различных параметров, характеризующих химические соединения, наибольшее значение имеют методы сравнительного расчета физико-химических свойств. Общий подробный обзор методов такого рода приведен в монографии М. X. Карапетьянца [1]. Применительно к задаче вычисления констант скоростей и равновесия имеют особое значение некоторые частные случаи приложения методов сравнительного расчета к свободным энергиям реакций или активации. Эти частные случаи объединяются в одну общую закономерность, известную под названием линейности свободных энергий (ЛСЭ). Ниже рассмотрены основные результаты, полученные путем непосредственного приложения ЛСЭ. Эта часть излагается в виде исторического обзора. Затем приводится общее теоретическое обоснование как ЛСЭ, так и других методов линей юго и полилинейного сравнительного расчета. Далее с этих позиций рассмотрены общие основы абстрактной количественной теории реакционной способности органических соединений. Последующая, основная часть книги посвящена сопоставлению теории с экспериментом и анализу конкретного материала. [c.13]


    Методы регрессионного анализа получили широкое распространение для оценки доверительных интервалов определения физико-химических параметров, входящих в теоретические уравнения, по экспериментальным данным. Например, в проточно-цир-куляционных реакторах непосредственно измеряется скорость реакции, что позволяет, прибегнув к линеаризации кинетического уравнения, определить затем кинетические коэффициенты линейного уравнения методами регрессионного анализа. [c.33]

    Кипящий, или нсевдоожиженный слой твердых частиц—система, гидродинамически очень сложная. Основной момент, определяющий гидродинамический режим процесса, — это характер движения твердых частиц. Каждая частица испытывает со стороны газового потока подъемную силу, в среднем равную ее весу флуктуации подъемной силы вызывают беспорядочные движения частицы. Если две частицы сближаются, локальная скорость потока в промежутке между ними растет, соответственно уменьшается локальное давление и частицы сближаются еще сильней. Таким образом образуются плотные скопления твердых частиц. Этот механизм исключает существование однородного кипящего слоя как неустойчивого состояния [33]. Обратное воздействие движения твердых частиц на газовый поток заключается в том, что гидравлическое сопротивление слоя становится резко неравномерным по сечению, и значительная часть потока, направляясь по пути наименьшего сопротивления, проходит слой в виде компактных масс —газовых пузырей. Неоднородность кипящего слоя — очевидная теоретически и наблюдаемая как визуально, так и с помощью разнообразных физических методов исследования (оценка локальной плотности слоя путе.м измерения его электрической емкости или поглощения слоем рентге1ювскпх или гамма-лучей) — вызывает резкие различия гидродинамических условий и условий протекания реакций в разных частях газового потока поэтому можно говорить о газе, проходящем в пузырях, и газе, просачивающемся сквозь плотный слой твердых частиц, как о двух разных фазах газового потока. В дальнейшем эти две фазы мы будем называть, пользуясь терминологией предыдущего параграфа, соответственно, пассивной и активной, предполагая, что только газ, находящийся непосредственно в промежутках между частицами катализатора (в активной фазе) может претерпевать химические превращения. Топологически пассивная фаза является прерывной, а активная — сплошной, что иногда используется в качестве их наименований 2. [c.223]

    Требования практики быстро и надежно освоить новые процессы и технологии методами математического моделирования породили необходимость формирования так называемого мак-рокинетического подхода к исследованию кинетики сложных химических реакций. Этот подход опирается главным образом на кинетический эксперимент, проводимый со смесью сложного состава в области температур и давлений, характерных для технологического процесса. Основное внимание концентрируется на корректной постановке этих экспериментов и последующей корректной математической обработке данных. По возможности при выводе макроскопических уравнений скорости обычно учитываются имеющиеся теоретические предпосылки о механизме реакции. В этом отношении макрокинетические модели нельзя считать чисто феноменологическими. В то же время не исключены ситуации чисто феноменологического подхода, когда вид уравнений макрокинетики отвечает только требованиям адекватного описания экспериментальных данных и однозначности оценок констант. Феноменологические модели, в области рабочих условий, для которых они построены, как правило, хорошо работают в составе математической модели реактора. [c.70]

    Энергии активации и предэкспоненциальные множители коэффициентов скоростей реакций. Расчет предэкспоненциальных множителей коэффициентов скоростей элементарных стадий может быть произведен с помогцью выражений статистической механики для функций состояний (см. гл. 1), при выборе определенной модели активированного комплекса и справочных величин для масс частиц, моментов инерции и частот колебаний исходных вегцеств. Величины энергий активации могут быть вычислены с помогцью квантовой механики при известных потенциальных поверхностях и определенном предположении об определенном соотногцении между кулоновским и обменным взаимодействием [20]. К сожалению этот метод представляет ценность, главным образом, для оценки правильности подхода, но не как практический путь для решения кинетических задач. Причина состоит в том, что квантово-механические расчеты все егце являются слишком грубыми для более или менее точного учета химического взаимодействия, особенно в сложных системах. Поэтому в настоягцее время используется полуэмпирические методы, не связанные с применением квантовой механики. В задачах, связанных с исследованием аэродинамического нагрева, используются имеюгциеся теоретические данные для некоторых из указанных характеристик поверхности, а другие параметры определяются с помош,ью сравнения расчетов с результатами специально проведенных экспериментов. [c.62]



Смотреть страницы где упоминается термин Методы теоретических оценок скоростей химических реакций: [c.168]    [c.113]    [c.2]    [c.22]   
Смотреть главы в:

Электронный аспект реакций полимеризации -> Методы теоретических оценок скоростей химических реакций

Электронный аспект реакций полимеризации -> Методы теоретических оценок скоростей химических реакций




ПОИСК





Смотрите так же термины и статьи:

Методы оценки

Химические реакции скорость

Химические скорость



© 2024 chem21.info Реклама на сайте