Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные определения и понятия. Равновесные системы

    При этом будут рассмотрены лишь те вопросы, которые имеют отношение к теории горения. В 2 будут сформулированы общие законы термодинамики, в 3 изложены основные положения статистической механики идеальных газов. В 4 устанавливаются условия химического равновесия при фазовых переходах и химических реакциях в газах (реальных и идеальных) и в конденсированных фазах (реальных и идеальных). В этом же параграфе указаны методы расчета состава равновесных смесей. В 5 вводится понятие о теплоте реакции и описаны методы определения этой величины, а также обсуждается расчет адиабатической температуры пламени. В последнем параграфе ( 6), посвященном конденсированным системам, выводится правило фаз и обсуждаются зависимости давления пара и точки кипения от концентрации, также осмотическое давление и другие вопросы, [c.434]


    Термодинамический метод основан на экспериментальных фактах, законах и аксиомах термодинамики. Одним из основных положений термодинамики является понятие о термодинамическом равновесии. Опытом установлено, что изолированная система, помещенная в определенные внешние условия, рано или поздно придет в равновесное состояние и выйти самопроизвольно из него не может. Равновесное состояние системы характерно постоянностью во времени ее параметров, а также отсутствием каких-либо потоков, являющихся следствием взаимодействия системы с окружающей средой. [c.5]

    Д. Гиббс открыл основные законы равновесия в неоднородных системах, образованных двумя или несколькими веществами. Он впервые ввел новые понятия, имеющие большое значение для изучения химических равновесий фазы — физически и химически однородные тела, из которых получается неоднородная равновесная система, компоненты — независимые переменные составные части, при соединении которых образуются различные фазы данной системы. Характер равновесия между несколькими фазами данной системы был определен совершенно точно по соотношению между числом фаз и числом компонентов в системе. Соотношение между числом компонентов п и максимальным числом фаз т равновесных систем Д. Гиббс выразил в правиле фаз  [c.331]

    Основные принципы и методы расчета аппаратуры, предназначенной для проведения процессов разделения, представлены для равновесных ступеней и аппаратов, в которых осуществляется непрерывное изменение концентраций. Важнейщие понятия проиллюстрированы на примере процесса абсорбции газа в тарельчатых колоннах и насадочных башнях. Рассмотрение ограничено бинарными системами при постоянной их температуре и давлении. Кратко изложены начала расчета многокомпонентной абсорбции углеводородов и методы учета неизотермических эффектов. Освещены также общие вопросы, касающиеся применения теории к процессам дистилляции, экстракции и отгонки легких фракций. Описаны ускоренные методы предварительного расчета тарельчатых и насадочных абсорберов и процессов в концентрированных газах. Развита приближенная теория многокомпонентной массопередачи при абсорбции. Приведена общая расчетная схема для строгого описания работы изотермических абсорберов. Интерпретированы известные определения эффективности тарелок и коэффициентов массопередачи. Авторы надеются, что данное в этой главе обсуждение в совокупности с фундаментальными понятиями, введенными в других главах книги, поможет читателю анализировать или рассчитывать более сложные абсорбционные процессы и иные операции. Подробное изложение общей теории расчета процессов и аппаратов химической технологии выходит далеко за рамки настоящей книги. Поэтому в главу включена довольно полная библиография по рассматриваемой проблеме. Предполагается, что заранее известны рабочие характеристики оборудования, методы экспериментального определения и расчета которых освещены в главе П. [c.426]


    Основные определения и понятия. Равновесные системы. [c.7]

    В основе понятия равновесных или квази-статических процессов лежит идея о том, что любое конечное, исходящее от внешнего источника воздействие на равновесную систему вызывает нарушение равновесия, сопровождающееся возникновением процессов перераспределения вещества и энергии. Как показывает т , опыт, в ходе протекающего при этом естественного процесса уу свойства системы изменяются таким образом, чтобы в системе ,) восстанавливалось равновесие. Однако при переходе системы из одного равновесного состояния в другое возникает сложная совокупность промежуточных состояний, длящихся определенный отрезок времени, в течение которого все свойства системы характеризуются значениями, изменяющимися от одной точки к другой. Таким образом, изменение состояния системы, являющееся следствием и проявлением ее неравновесности, возникшей вследствие конечного воздействия извне, нарушает условия приложимости термодинамических методов исследования, которые применимы лишь к равновесным состояниям. Эта трудность разрешается введением понятия о равновесном или квази-статическом процессе, представляющем основной объект термодинамического исследования. [c.16]

    На основе большого фактического материала им было точно найдено, что диаграммы состав — свойство с равным числом измерений (или одинаковым числом независимых переменных) имеют одинаковое топологическое строение, т. е. состоят из одинакового числа геометрических элементов. Диаграммы состав— свойство представляют замкнутый комплекс точек, линий, поверхностей и других геометрических образов. Понятие комплекса в химической диаграмме соответствует понятию системы , и разные элементы первого могут быть приведены во взаимно однозначное соответствие с элементами последней. Это возможно было осуществить, руководствуясь принципом соответствия. Принцип корреляции, или соответствия между химическими превращениями в равновесной системе и геометрическими свойствами диаграммы, является общим и одним из основных свойств химической диаграммы. Согласно названному принципу, отмечает Н. С. Курнаков, каждой фазе равновесной системы соответствует один определенный геометрический образ комплекса диаграммы свойств [1, стр. 64]. [c.198]

    Равновесные соотношения в системах жидкость—жидкость. Основные понятия и определения [c.31]

    Основные понятия и определения. Объектом изучения классической термодинамики является равновесная макроскопическая система, свойства которой могут быть разделены на экс- [c.3]

    В книге в виде вопросов и ответов рассмотрены традиционные темы, связанные с определением основных понятий, формулировкой постулатов и обсуждением закономерностей протекания процессов в однородных, прерывных и непрерывных термодинамических системах. Показано, как, исходя из формул неравновесной термодинамики, можно получить равновесные соотношения в отсутствие и при наличии внешних полей Рассмотрены явления переноса в растворах электролитов, а также электрокинетические явления. Материал изложен подробно, просто, и по суш еству является элементарным введением в рассматриваемую область. Объем материала и круг рассматриваемых вопросов значительно шире раздела программы курса физической химии, посвяш енного неравновесной термодинамике. Книга предназначена для студентов, аспирантов и преподавателей химических специальностей [c.2]

    Каковы основные предпосылки модели лиганд-рецепторного взаимодействия, описываемой схемой (1.2) и уравнением (1.1) Какие из этих предположений могут нарушаться 2. Выведите уравнение, описывающее концентрацию лиганд-рецепторных комплексов в зависимости от количества добавленного лиганда, если концентрации лиганда и рецептора соизмеримы Как определять параметры рецепторного связывания в этом случае Приводит ли изменение концентрации лиганда за счет лиганд-рецепторного взаимодействия к изменению аналитического вида графиков, построенных в координатах Скэтчарда 3. Какие изменения наблюдаются в графиках, построенных в координатах Скэтчарда, при отсутствии равновесия в системе лиганд-рецептор 4. Какие характерные изменения наблюдаются в кинетике лиганд-рецепторного взаимодействия, если изменяется суммарная концентрация лиганда или рецепторов За счет каких процессов это может происходить 5. Как можно разграничить процессы рецепторного связывания, транспорта и деградации лиганда 6. Какие изменения в кинетике связывания наблюдаются при наличии двух типов мест связывания 7. Дайте определение понятию кооперативность . Какие виды кооперативного лиганд-рецепторного взаимодействия вы знаете 8. Выведите уравнение для преобразований Хилла. 9. Как с помощью координат Хилла определять степень кооперативности Сравните понятия степень кооперативности и кажущаяся степень кооперативности . 10. Выведите уравнение для преобразований Бьеррума. Как определять число мест связывания в координатах Бьеррума 11. Как с помощью координатных методов определить модель лиганд-рецепторного взаимодействия 12. Как определяются основные кинетические и равновесные параметры рецепторного связывания  [c.404]


    Изучение самоорганизации в неравновесных системах, связанных с флуктуирующими средами, стало третьим основным стимулом к переоценке роли случайности. Именно проблемам самоорганизации в таких системах и посвящена наша книга. За любой нашей попыткой взглянуть на природу детерминистическими глазами кроется наивное интуитивное убеждение в тривиальности влияния флуктуаций в среде (под которыми обычно подразумевают быстрые флуктуации). В подтверждение правильности своих взглядов сторонники этого убеждения приводят следующие доводы. (1) Быстрый шум усредняется, и макроскопическая система по существу приспосабливает свое состояние к средним условиям в среде. (2) Стохастическая вариабельность условий в среде приводит к расплыванию, или размазыванию, состояния системы вокруг среднего состояния. Флуктуации являются помехами, они оказывают дезорганизующее действие, но в конечном счете их роль вторична. Такого рода интуитивные представления были выработаны на рассмотрении определенного типа связи между системой и окружающей ее средой. Удивительно, однако, что поведение нелинейной системы в среде с шумом, как правило, противоречит подобным интуитивным представлениям. Проведенные за последние годы -систематические теоретические и экспериментальные исЬледования показали, что в общем случае поведение систем значительно отличается от нарисованной выше простой картины. В широком классе явлений природы случайный характер среды, несмотря на свое, казалось бы, дезорганизующее действие, способен ин дуцировать гораздо более богатоефазнообразие режимов, чем те, которые возможны при соответствующих детерминированных условиях. Как ни странно, но усиление стохастической вариабельности среды может приводить к структурированию нелинейных систем, не имеющему детерминированного аналога. Еще более замечательно то, что переходы от одной структуры к другой по своим свойствам аналогичны равновесным фазовым переходам и переходам, встречающимся в неравновесных системах при детерминированных внешних воздействиях, таким, как, например, неустойчивость Бенара и лазерный переход. Понятие фазового перехода было обобщено на переходы последнего типа около десяти лет назад, поскольку некоторые свойства, характеризующие [c.18]

    Несомненно, кратко изложенное выше состояние исследуемой проблемы не могло не отразиться и ня достоверности некоторых положений, приводимых здесь. Некоторые вопросы представлялись в определенной степени спорными и при компоновке содержания настоящей книги. Так обстояло дело, нанример, с классом блок-сополимеров, у которых упорядоченные системы образуются не на молекулярном, а на иадмолекулярно.м уровне. Более подробно вопрос об отнесении блок-соиоли.меров в упорядоченном состоянии к жидким кристаллам затрагивается непосредствеппо в основном тексте монографии. Рассмотрение материала о структуре суперкристаллов блок-сополимеров оправдано здесь целесообразностью общего анализа проблемы упорядочения макромолекул в полимерных системах. Трехмерное — истинно кристаллическое — упорядочение, образование мезофазы, неравновесное ориентированное состояние макромолекул, вызванное временным наложением внешних направленных полей, образование упорядоченных структур в околокритических областях фазовых переходов, флуктуационные упорядочения в растворах и расплавах гибкоцепных полимеров — все это имеет для полимеров особое значение, несомненно большее, чем для низкомолекулярных систем, поскольку именно для полимеров кинетика ироцессов, связанных с диффузионным перемещением макромолекул и, следовательно, с кинетической подвижностью их, приобретает часто решающее значение нри оценке состояния и свойств системы. Недооценка или, наоборот, переоценка кинетической обусловленности процессов иногда вызывает смешение понятий о термодинамических равновесных и неравновесных состояниях. Попытка внести ясность в один из перечисленных выше процессов упорядочения в полимерных системах, а именно в образование полимерных жидких кристаллов,— такова еще одна цель, которая преследовалась при написании настоящей монографии. В главе второй частично затрагивается эта проблема. [c.9]


Смотреть страницы где упоминается термин Основные определения и понятия. Равновесные системы: [c.303]    [c.186]    [c.186]   
Смотреть главы в:

Физическая химия -> Основные определения и понятия. Равновесные системы

Физическая химия Издание 2 1979 -> Основные определения и понятия. Равновесные системы




ПОИСК





Смотрите так же термины и статьи:

Определения основных понятий

Определения равновесной системы

Основные определения

Система равновесная

определение понятия



© 2025 chem21.info Реклама на сайте