Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неодимий

    Выявлена высокая экстракционная способность нефтяных сульфоксидов (т. е. продуктов окисления нефтяных сульфидов) по отношению к солям урана (уранила) и неодима. Эффективные коэффициенты экстракции уранилнитрата нефтяными сульфоксида-мй достигают 3600—4800 [587], причем циклические сульфоксиды обладают лучшими экстракционными свойствами, нежели алифатические. Емкость 50%-ных растворов нефтяных сульфоксидов в л -ксилоле по нитрату неодима достигает 100—120 г/л [588]. [c.81]


    В настоящее время наряду с рубином в твердотельных лазерах в качестве активного элемента используют стекла с неодимом и алюмо- [c.98]

    Реакция протекает либо при 600—800 °С в присутствии катализаторов иттрия, лантана, церия, празеодима, неодима, самария или тория [74], либо при 320—630 °С в случае использования катализаторов никеля — оксида хрома (III) или никеля — оксида алюминия. Выход бензола составляет около 90%. В присутствии платины или палладия на активном оксиде алюминия селективность повышается до 96—98 % [75]. [c.334]

    При изучении химических свойств соединений лантаноидов (III) и церия (IV) можно использовать наиболее часто встречающиеся в лабораториях соли лантана, церия, празеодима, неодима и самария. Химические свойства актиноидов изучаются на примере соединений тория и урана. [c.242]

    К 0,5—1 мл раствора соли лантаноида (лантана, церия и др.) прилейте такой же объем разбавленного раствора гидроксида натрия или аммония. Отметьте окраску полученных гидроксидов лантаноидов (белые осадки лантана, церия и самария зеленый — празеодима, сиреневый — неодима). Осадки разделите в две пробирки и в одну из них прилейте раствор кислоты (азотной, соляной или серной), а в другую — концентрированный раствор щелочи. Каковы химические свойства гидроксидов лантаноидов Как изменяются основные свойства гидроксидов при переходе от церия к лютецию  [c.242]

    Лазерный микрозонд. Источником лазерного луча являются ксеноновая лампа и стекло с добавкой неодима. Диаметр зонда 10 нм, а диаметр кратера на объекте 35—100 нм. Поэтому объектами исследования лазерным пучком должны быть крупные кристаллы. Метод дает плохо воспроизводимые результаты из-за большого диаметра кратера. [c.153]

    С температурный перепад внутри автоклава составлял 10...25°С. Сам автоклав представлял собой сосуд из жаропрочной стали, внутренняя поверхность которого была покрыта тонким слоем золота. Исходная шихта представляла собой смесь А1(0Н)з, Ве(ОН)2, кварцевый порошок и в качестве окрашивающего агента — хлорид хрома. Кроме того, для придания специфических оттенков изумрудному цвету вводили немного (по массе) соединений железа, никеля, ванадия и неодима. В качестве растворяющей среды использовали водный раствор фторида аммония с добавкой фторида калия и водного раствора аммиака. В некоторых растворах скорость роста кристаллов удалось довести до 0,8 мм/сут. [c.77]


    Таким образом, твердые растворы со структурами шеелита и вольфрамата неодима должны быть разделены гетероген- [c.171]

    В качестве второго примера можно рассмотреть переход от структуры шеелита к структуре вольфрамата европия (к ней относятся также структуры вольфрамата неодима и церия). Координаты атомов вольфрамата и кислорода в обеих структурах близки, и приблизительные координаты их для вольфрамата европия можно получить преобразованием координат структуры шеелита, треть позиций кальция в вольфрамате европия вакантна, а две трети заняты европием, Матрица [c.190]

Рис. 6,23, Спектры комплексов церия (а) и неодима (6). В ряду 1- -6 увеличивается концентрация лиганда или pH раствора индексы /, II, Рис. 6,23, <a href="/info/5237">Спектры комплексов</a> церия (а) и неодима (6). В ряду 1- -6 увеличивается <a href="/info/10358">концентрация лиганда</a> или pH раствора индексы /, II,
    Равновесие реакций ионизации может быть смещено введением в пламя элемента с низким потенциалом ионизации. Для этой цели, как правило, используют соли калия или цезия. На рис. 3.26 показано изменение интенсивности атомных и ионных линий лантана и неодима в зависимости от концентрации хлорида калия в растворе. [c.62]

    Составить полные электронные формулы элементов кальция (2 = 20), хрома (2 = 24), рутения (2 = 44), неодима (2 = 60), ртути (2 = 80) и свинца (2 = 82). Суммировать число электронов [c.49]

    Составьте электронные конфигурации для атомов следующих элементов И1Б группы а) лантана, гадолиния и лютеция в нулевой степени окисления, б) церия и неодима в степени ( + И1), в) церия в степени окисления (+IV). Почему все лантаноиды(И1) обнаруживают большое сходство в химических свойствах  [c.129]

    Радиусы атомов лантаноидов были определены из кристаллических структур металлов. Большинство их имеет гексагональные решетки, европий имеет решетку объемноцентрированного куба, а иттербий — кубическую. Для церия, празеодима и неодима известно по две различные модификации. На рис. 12 показано изменение величин радиусов атомов (сплошная линия) лантаноидов в зависимости от увеличения 2. Элементы, проявляющие валентность 2, характеризуются резким возрастанием радиусов их атомов (у европия и иттербия), а для остальных вместе с ростом 2 происходит уменьшение радиусов атомов, сжатие последних, называемое лантаноидным сжатием или контракцией. [c.59]

    Добавление церия, неодима и других лантаноидов к легким конструкционным сплавам магния позволило на 100—150 повысить их жаростойкость Подобные сплавы применяют для отливки деталей сверхзвуковых самолетов, управляемых снарядов и оболочек искусственных спутников. Сплав магния с церием и торием используют в качестве жаропрочного конструкционного материала в ядерных реакторах. Сплав А1—Си—содержащий Се и ТЬ, не поддается действию кислот и морской воды. Для изготовления химической посуды, выдерживающей высокую температуру, применяют сплав Сг—Ре, содержащий Се и ТЬ. [c.71]

    При очередной кристаллизации маточный раствор обогащался более растворимым, а кристаллы — менее растворимым компонентом. Проведение сотен перекристаллизаций привело к выделению препаратов чистого неодима и празеодима. [c.76]

    После того как Ауэр фон Вельсбах доказал присутствие в дидиме неодима и празеодима, Браунер пишет [20, с. 48] Менделееву (1885 г.) Как Вы знаете, я уже несколько лет тому назад указал на присутствие в дидиме элемента, который дает желто-зеленую соль, но который не есть церий. Однако действительное разделение произвести мне не удалось даже при помощи двойных солей нитратов с ЫН4 ЫОз-Но Ауэр фон Вельсбах пришел к мысли провести разделение с помощью данного Вами метода, в кислом растворе, и ему вполне удалось подтвердить высказанную Вами мысль о дидиме . [c.89]

    Атомы, начиная с лития (2 = 3) и кончая неодимом (2 = 60), каждый дают серию К, состоящую из пяти линий разной яркости, которые обозначаются /С..., Кг,,, /С(5 Ку [c.31]

    Например, еще в 1794 г. финский химик Юхан Гадолин (1760— 1852) предположил, что в минерале, полученном из Иттербийского-карьера, расположенного вблизи Стокгольма, содержится новый оксид металла (или земля). Поскольку эта новая земля значительна отличалась от уже известных земель, например кремнезема, извести и магнезии, то ее отнесли к редким землям. Гадолин назвал открытый им оксид иттрия по названию карьера спустя 50 лет из этога оксида был выделен в относительно чистом виде новый элемент — иттрий. Примерно в середине XIX столетия химики начали интенсивно изучать состав редкоземельных минералов. Проведенные исследования показали, что эти минералы содержат целую группу новых элементов — редкоземельных элементов. Шведский химик. Карл Густав Мосандер (1797—1858) открыл, например, в конце 30-х — начале 40-х годов XIX в. четыре редкоземельных элемента лантан, эрбий, тербий и дидим. На самом деле их было пять поскольку спустя сорок лет в 1885 г. австрийский химик Карл Ауэр фон Вельсбах (1858—1929) обнаружил, что дидим представляет собой смесь двух элементов, которые он назвал празеодимом и неодимом. Лекок де Буабодран также открыл два редкоземельных элемента самарий в 1879 г, и диспрозий в 1886 г. Сразу два редкоземельных элемента — гольмий и тулий описал в 1879 г, П. Т, Клеве, а в 1907 г. французский химик Жорж Урбэн (1872—1938) сообщил о новом четырнадцатом редкоземельном элементе — лютеции (Лютеция — древнее название Парижа). [c.104]


    Получение лазерного луча. За счет накачки внешней энергии (электрической, световой, тепловой, химической) атомы активного вещества - излуча1еля переходят в возбужденное состояние. Возбужденный атом излучает энергию в виде фотона. В отрасли используются твердотелые лазеры. В качестве активного вещества служит оптическое стекло с примесью неодима и редкоземельных элементов. [c.120]

    Один из крупных потребителей редкоземельных металлов — стекольная промышленность. Стекло, содержащее церий, не тускнеет под действием радиоактивных излучений и применяется в атомной технике. Оксиды лантана и неодима входят в состав многих оптических стекол. Небольшие добавки оксидов лантаноидов используются для обесцвечивания стекол и для придания им окраски. Так, ЫёгОз придает стеклу ярко-красный цвет, а РггО — зеленый. Оксиды лантаноидов используются также для окраски фарфора, глазури, эмали. [c.643]

    В твердотельных лазерах в качестве активной среды используют как диэлектрики (рубин, стекло с добавками неодима, алюмоиттрие-вый гранат - АИГ), так и полупроводники (например, арсенид галлия). В газовых лазерах активной фазой могут быть чистые газы (Вг, N6, Кг, Хе) или смеси газов (Не - N6, С02-Н2 Не). К.п.д. твердотельных лазеров лежит в пределах 0,01-4%, а газовых 8-30%, причем наиболь- [c.97]

    Нефтяные кислоты являются экстрагентами металлов цезия, бериллия, ниобия, рубидия, молибдена, марганца, лантана, празеодима, неодима, гадолиния, диспрозия монотионефтяные кислоты — экстрагентами золота, теллура, селена, палладия, серебра, висмута, кобальта, никеля [143]. [c.346]

    В промышленной практике для ионного обмена используется смесь редкоземельных элементов. Установлено [1, 2], что стабильная активность прямо пропорциональна содержанию лантана или неодима и обратно пропорциональна содержанию церия в цеолитном компоненте. На рис. 3.20 показана зависимость стабильной активности цеолитсодержащих катализаторов в крекинге керосино-газойлевой фракции при 450 °С от изменения отношения Ме Н в цеолите типа V (20% масс, на катализатор) для лантаноидов цериевой группы. Наблюдается закономерное изменение активности с ростом отнощения Ме Н в цеолите для всех лантаноидов за исключением образца с катионами церия, активность которого значительно ниже. Как следует из приведенных данных, для катализаторов с редкоземельными элементами для обеспечения высокой стабильной активности отношение Ме Н в цеолите должно составлять не менее 3 1. Степень замещения катионов натрия на катионы редкоземельных элементов, по данным [I], должна находиться в пределах 40—85%. [c.44]

    Рнс. 12. Разделение лантана, пра-зеодн.ма и неодима хроматографией на бумаге. [c.71]

    Опыты по взаимодействию водяных паров, присутствующих в воздухе, с оксидом неодима, предварительно прокаленным при температуре 1200°С, показали, что заметная реакция между ними имеет место только по прошествии 400...500 ч. Если же тонко раздробить массу оксида неодима, то за счет резкого увеличения поверхности реакционная способность Мс120з увеличивается. В аналогичных условиях реакция с парами воды отмечается уже через 40...50 ч, т. е. за время, в 10 раз меньшее. При действии на КагОз ударной волны возникают многочисленные дефекты в кристаллической решетке оксида и реакция его с водяным паром протекает быстро и начинается немедленно после контакта с N(1203 с Н2О. [c.214]

    Нет сомнения, что существует вторая группа внутрирядных не реходных элементов, в которых заполняется 5/-подуровень, од нако неясно, где действительно начинается этот ряд, где появля ются 5/-электроны. Трудность отнесения электрона к определен ному подуровню атома для элементов, стоящих после актиния заключается в близости величин энергии для 5/- и 6й-состояний Энергии, выделяющейся при образовании химической связи достаточно для перехода электрона с одного на другой энергети ческий уровень. Первый 5/-электрон должен был бы появиться у атома тория. Однако многие свойства этого элемента указывают на то, что его следовало бы поставить в подгруппу IV А под гафнием, а не в III А под церием. Протактиний и уран по их свойствам тоже больше подходят к подгруппам V Л и VI Л, нежели к празеодиму и неодиму. Однако в настоящее время есть обстоятельные спектроскопические и химические доказательства, подтверждающие мнение, что элементы, стоящие после актиния, образуют второй редкоземельный ряд, и что 5/-электроны впервые появляются у протактиния. [c.105]

    Анализ расположения не только линий, соответствующих субъячейке, но и сверхструктурных линий, позволяет найти параметры элементарной ячейки N3 Мс(2( Л/Од) . Векторы этой моноклинной ячейки и тетрагональной субъячейки связаны соотношениями а = От + 26. , в, =с.у., С =2а. -в. . Объем ячейки увеличивается в Ь раз, что согласуется с предложенным составом. Этот стехиометрический состав попадает в область гомогенности фазы в интервале температур до 1000 С. В случае стехиометрического состава можно предполагать упорядочение в расположении катионов и вакансий (катионы могут располагаться по занятым позициям статистически). Смещение состава в сторону N32 0 будет приводить к частичному заполнению вакансий, в сторону вольф-рамата неодима - неупорядоченно расположенных вакансий наряду с упорядоченными. Тип сверхструктуры при этом сохраняется, что было показано для образца, содержащего 20% мол. Na2 закаленного с 1100". Определение границ [c.172]

    Определение скаидия при помощи ксиленолового оранжевого проводят при рИ 1,5. В 5ти условиях не мешают нойы щелочноземельных элементов, лантана, празеодима, неодима, самария, церия (П1), иттрия, цинка, кадмия, алюминия, марганца, железа (И). Поэтому метод можно применять для фотометрического определения скандия в металлическом магнии и магниевых сплавах без отделения компонентов сплава. Мешают ионы циркония, тория, галлия и висмута, образующие с ксиленоловым оранжевым окрашенные соединения. Соединения железа (П1) и церия (IV) предварительно восстанавливают аскорбиновой кислотой. [c.373]

    Составить уравнения реакций образования гидроксидов празеодима, неодима и европия и взаимодействия их с кислотами (НС1 иН2504). [c.253]

Рис. 3.26. Изменение поглощения атомных и ионных линий лантана и неодима в зависимости от концентраций хлорида калия / — Ndl 492 нм 2 — Lai 550,1 нм 3 — Ndll 430,3 нм 4 — Lall 408,6 нм Рис. 3.26. <a href="/info/569587">Изменение поглощения</a> атомных и <a href="/info/581767">ионных линий</a> лантана и неодима в зависимости от <a href="/info/924480">концентраций хлорида</a> калия / — Ndl 492 нм 2 — Lai 550,1 нм 3 — Ndll 430,3 нм 4 — Lall 408,6 нм
    Общее содержание лантаноидов в земной коре невелико и составляет около 0,004 вес.%. Церитовые элементы преобладают над иттриевыми. Больше всего в природе церия и неодима. Известно много минералов, в состав которых входят лантаноиды, но содержание их не превышает 8 вес.% (имеется в виду суммарное содержание лантаноидов, лантана и иттрия). [c.69]

    В 1885 г. австриец Ауэр фон Вельсбах нашел, что дидим (Di), описанный Мозандером и получающийся ири отделении от цериевой земли в свою очередь состоит из двух элемеитов-близнецов — неодима (Nd, новый), имеющего соли красно-фиолетового цвета, и празеодима (Рг, зеленый), дающего соли, окрашенные в зеленый цвет. Поскольку красный и зеленый — цвета дополнительные, соли зеленого Рг(1И) и красно-фиолетового Nd(III) при совместной кристаллизации образуют практически бесцветные кристаллы. Только при очень длительном фракционировании можно отделить Рг(1П) от Nd(III) и по разнице в окраске солей их идентифицировать методами спектрального анализа и визуально. [c.65]

    Сейчас установлено, что при образовании комплексов ML первый лиганд (L), присоединяемый ионом М , как правило, координируется ионом металла прочнее, чем второй, третий и т. д. [2]. Таким образом, можно было ожидать, что и в комплексных цитратах РЗЭ первый остаток it будет координироваться ионом М + сильнее, чем второй, поскольку уже первый остаток it - в значительной мере нейтрализует заряд центрального иона. Действительно, определение констант устойчивости цитратов РЗЭ показало [И], что pKi присоединения первого иона it больше, чем рКг- Так, Ig последовательных /Сует цитратов одного из типичных РЗЭ цериевой подгруппы неодима имеют следующее значение [11]  [c.77]

    Таким образом, из 17 элементов, относящихся к РЗЭ, он учитывал только пять лантан, церий, дидим, эрбий и иттрий. Введенный Менделеевым в первые варианты периодической системы дидим впоследствии был расшифрован (с. 75) как смесь неодима и празеодима. Эрбий, иттрий и открытый к этому времени, но охарактеризованный не полно тербий тоже представляли собой смесь нескольких элементов (с. 65). Они, как выяснилось позже, содержали значительные количества гадолиния, тербия (истинного), диспрозия, гольмия, эрбия (ис-гинного), тулия, иттербия, лютеция, а также скандия и истинного иттрия. Менделееву были хорошо известны экспериментальные трудности, связанные с выделением редких металлов в чистом виде и особенно с их анализом. Обсуждая проблему размещения в периодической системе дидима и лантана, Менделеев писал [18, с. 145] о величине нх эквивалента Ошибку в определении можно ждать еще и потому, что в чистоте препаратов нет возможности убедиться чем-либо киым, как М]Югократною кристаллизациею, а она, как известно, не всегда служит для отделения от изоморфных примесей . [c.83]

    Современники Менделеева, занимавшиеся исследованиями в области РЗЭ, высоко ценили его роль в решении этой сложной проблемы. Так, Жорж Урбен, которому принадлежит часть открытия и выделения лютеция, почитал Менделеева как одного из создателей теории РЗЭ. Будучи синтетиком и много занимаясь разделением смесей РЗЭ, Урбен особенно высоко ценил предложенный Менделеевым метод фракционированной кристаллизации двойных нитратов , который был затем успешно применен Ауэром фон Вельбахом для отделения лантана от дидима и для выделения из последнего неодима и празеодима. Этот замечательный метод, — писал Урбен о методе Менделеева [6, с. 656], — начинает в области редких земель новую эру фракционированных кристаллизаций . [c.87]


Смотреть страницы где упоминается термин Неодимий: [c.105]    [c.148]    [c.240]    [c.575]    [c.261]    [c.341]    [c.170]    [c.171]    [c.173]    [c.245]    [c.39]    [c.71]    [c.81]   
Смотреть главы в:

Спектральный анализ минеральных веществ -> Неодимий




ПОИСК







© 2025 chem21.info Реклама на сайте