Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печень веществ

    Другие опасные вещества претерпевают в печени химические превращения, делающие их менее токсичными и более растворимыми в воде. В таком виде они легко выводятся из организма. Типичное химическое превращение, осуществляемое в печени, — превращение бензола (нерастворим в воде) в пирокатехин (растворим)  [c.486]

    Основные недостатки описанной технологической схемы малая мощность печей неравномерность обогрева змеевиков факельными горелками, в результате чего снижается величина конверсии и возникает необходимость частых остановок печен на прожиг недостаточное полезное использование тепла, содержащегося в газах пиролиза неполное удаление из газов пиролиза смолистых веществ плохая очистка сточной воды. [c.13]


    Во всех цехах коксохимического производства выделяются токсичные вещества. В табл.10.1 приведен перечень некоторых из них с указанием токсичности и предельных допустимых концентраций в воздухе и воде. Все эти вещества оказывают значительное неблагоприятное действие на здоровье людей, нанося серьезный ущерб крови, органам дыхания, нервной системе и печени, генетическому аппарату. Особенно опасны 3,4-бензпирен и некоторые другие полициклические ароматические углеводороды, способные вызывать развитие злокачественных новообразований (канцерогены). В реальных условиях действие токсичных веществ может взаимно усиливаться. Так, фенолы сами ло себе не являются канцерогенами, но в их присутствии канцерогенные полициклические ароматические углеводороды лучше проникают в организм и удерживаются в нем. [c.364]

    Пары бензина попадают в организм через органы дыхания с воздухом. Этот путь отравления наиболее опасен, так как пары легко проходят через альвеолы легких и всасываются в кровь, минуя печень, которая играет важную роль в задержке и обезвреживании токсичных веществ. Углеводороды бензина могут легко проникать в организм и через неповрежденную кожу. Токсичность бензинов обусловливается их химическим и фракционным составами. Чем больше в бензине углеводородов с двойными связями, тем он токсичней. Содержание паров бензина в воздухе зависит от его испаряемости (давления насыщенных паров, температуры начала кипения). Высокой токсичностью характеризуются свинцовые антидетонаторы, широко применяемые при производстве бензинов. Токсичность бензинов также возрастает с увеличением концентрации сероорганических и кислородсодержащих соединений. [c.20]

    Гликоген. Этот углевод, открытый Клодом Бернаром (1857) в печени, является резервным питательным веществом организма животных. Особенно богата им печень высших и низших животных ( печеночный крахмал ), но он широко распространен также в мускульной ткани и во многих других клетках. Во время работы мышц содержание в них гликогена уменьшается углевод при этом разрушается до молочной кислоты. [c.456]

    Наличие этих составляющих в той или иной степени характерно для любых мембранных процессов. Однако примеры использования последних в анализе суперэкотоксикантов немногочисленны, хотя мембранное разделение является одним из лучших методов для отделения анализируемых веществ на уровне следовых количеств от связанных с ними белков. Так, с помощью мембран вьщеляют микотоксины в концентрациях порядка 1-4000 мкг/кг из кормов и печени свиней 1110,111]. [c.226]


    АЗОТ ОСТАТОЧНЫЙ — азот веществ, остающихся в крови или в экстрактах тканей человека после осаждения белков. Повышение содержания А. о. в крови наблюдается при заболеваниях почек, печени, злокачественных опухолях, туберкулезе и т. д. А. о. определяют методами химического анализа крови. [c.10]

    Значение коллоидной защиты для биологии и фармации чрезвычайно велико. Принцип коллоидной защиты используют при получении колларгола, золей серебра, золота и т, д. Частицы колларгола так хорошо защищены, что не коагулируют даже при высушивании, Белки крови защищают капельки жира, холестерин и другие гидрофобные вещества от коагуляции. Ослабление защитных функций белков крови приводит к отложению холестерина на стенках сосудов, образованию камней в почках, печени и т. п. [c.439]

    Наличие пространственной сетки в студнях препятствует перемешиванию. По этой причине химические реакции протекают в студнях с небольшой скоростью, их характер зависит от растворимости продуктов. Если образуются нерастворимые вещества, то они отлагаются слоями в виде окрашенных концентрических колец (колец Лизеганга), разделенных прозрачными прослойками, или в виде более сложных рисунков ( лепестков и т. п.). Такие реакции называют периодическими или ритмическими. Периодические реакции играют большую роль в образовании отложений в тканях живых организмов, геологических процессах. Этими реакциями обусловлены, например, слоистая узорчатость многих минералов, структура камней в почках и печени и т. п. [c.477]

    Радиоизотоп Р находит широкое применение для различных целей. Так, 3-излучение используется в лечебной практике. Изотоп Р дал возможность разъяснить механизм усвоения фосфора растениями из почвы и удобрений. Это позволяет разрабатывать рациональные способы внесения удобрений в почву. Установлено, что фосфор очень быстро воспринимается растениями (после контакта корней с мечеными фосфорными удобрениями радиоизотоп Р может быть обнаружен в листьях уже через 15—20 мин). При введении Р в животный организм с пищей он оказывается в печени, мышцах, мозгу, молоке или в костной ткани уже через 4—6 ч. Это говорит о быстроте протекания процесса обмена веществ в животном организме. Далее, при помощи изотопа Р обнаружена способность корней растений поглощать некоторые органические вещества без их предварительной минерализации. [c.478]

    Электропроводность разных тканей и биологических жидкостей неодинакова наибольшей электропроводностью обладают спинномозговая жидкость, лимфа, желчь, кровь хорошо проводят ток также мышцы, подкожная клетчатка, серое вещество головного мозга. Значительно ниже электропроводность легких, сердца, печени. Очень низка она у жировой ткани, нервной, костной. Хуже всего проводит электрический ток кожа (роговой слой). Сухой эпидермис почти не обладает электропроводностью. Жидкость межклеточных пространств гораздо лучше проводит ток, чем клетки, оболочки которых оказываются существенным препятствием при движении многих ионов. Возле оболочек накапливаются одноименные ионы, возникает их поляризация. Все это приводит к резкому (в 10—100 раз) падению силы постоянного тока, проходящего через ткани, уже через 0,0001 сек после его замыкания. Поэтому электропроводность кожи обусловлена, главным образом, содержанием протоков желез, особенно потовых. В зависимости от физиологи- [c.43]

    Мезо-инозит в свободном и связанном виде широко представлен в растительном и животном мире и встречается почти во всех тканях растений и животных организмов. У животных мезо-инозит обнаружен в мышцах, почках, печени, веществе мозга (в виде кефа-линфосфолипида) и других органах. [c.69]

    Необходимо отметить, что дифенилолпропан тoк ичeн При длительном вдыхании пыле-воздушных смесей этого вещества нарушается деятельность печени, почек, а также отмечается стойкое снижение содержания гемоглобина в крови. Предельно допустимая кон- [c.8]

    Пища и другие проглоченные вещества перевариваются лишь частично в желудке, а в осрювном — в тонком кишечнике. Переваренная пища, другие небольшие молекулы и некоторые ионы проходят сквозь стенки тонкого кишечника в кровь, а чалее следуют прямо к печени. Непереваренная пища и молекулы или исрны, не прошедшие сквозь стенки, выводятся из организма. Некоторые яды, попавшие в организм через желудок, выводятся именно этим способом. [c.485]

    Печень далее отделяет полезные вещества от вредных и бесполезных. Полезные — глюкоза, 311пасаемая в виде гликогена, и другие простые углеводы. [c.485]

    Способность печени обезвреживать кровь ограничен а. Перегрузка опасными веществами может оказаться слишком обременительной для нее. В результате функции печени могут подавляться, что вызовет проблемы в распределении необходимых молекул - глюкозы и аминокислот - и в синтезе важных белков. Перегрузка печени может привести также к накоалению вредных молекул в жировых запасах тела. [c.486]

    Холестерин представляет собой бесцветное кристаллическое вещество состава С2,Н4вО, найденное в яичном желтке, печени, крови, мозге, рыбьем жире, молоке, коровьем масле и прочих [c.54]


    В растениях молекула глюкозы полимеризуется в цепи, состоящие из тысяч мономерных единиц, в результате чего получается целлюлоза, а если полимеризация происходит несколько иным образом, получается крахмал. Близкородственный к глюкозе К-ацетилглюкозамин в результате полимеризации образует хитин - вещество, из которого состоит роговица насекомых. Другое близкое по составу вещество, Ы-ацетилмурановая кислота, сополимеризуется в другую последовательность цепей, из которых построены стенки бактериальных клеток. Глюкоза разлагается в несколько стадий, выделяя энергию, которая требуется живому организму. Избыток глюкозы переносится кровотоком в печень и превращается в животный крахмал - гликоген, который при необходимости снова превращается в глюкозу. Глюкоза, целлюлоза, крахмал и гликоген относятся к углеводам. [c.308]

    Пек и его дистилляты вызывают фотодерматиты, поражают фолликулярный аппарат кожи. Частицы смолистых веществ, забивая выводные протоки сальных желез, вызывают поражение сосудов кожи. Ухудшается кожная терморегуляция, прп этом развиваются и общие нарушения сердечно-сосудистой системы, а также снижается антитоксическая функция печени. Наконец, развиваются папилломатозные бородавки, которые переходят в ветвистые и изъязвляющиеся папилломы (бородавочные разрастания и язвы). В зависимости от природы смолистых веществ у значительного числа подопытных животных (от 75 до 90%) эти новообразования перерастают в рак [2, с. 86—93]. [c.318]

    В животном организме таурин образуется, вероятно, из отбросных веществ, содержащих серу, при прохождении их через печень. Окисление п декарбоксилирование цистина, который считают природным источником [154] таурина, осуществлено в лабораторных условиях [155а,б,е]. На то, что таурин является отброснымпро-дуктом, указывают опыты кормления животных, согласно кото- [c.132]

    Полнены гидрируются легко, присоединяя на каждую кратную связь по молекуле водорода это является превосходным методом для установления числа С==С-связей. Гидрирование оказало неоценимые услуги при изучении строения многих природных веществ. Так, например, методом гидрирования была установлена степень иепредельности сквалена—углеводорода из печени акулы. При гидрировании с Ni-катализатором под давлением к сквалену присоединилось шесть молекул водорода  [c.353]

    Гликоген. По строению он напоминает амилопектин, но степень разветвления значительно выше. Гликоген накапливается в организмах животных (преимущественно в печени и мышцах) как резервное вещество. Гтикоген легко расщепляется с образованием глюкозы и снабжает ею организм животных при физических нагрузках и в промежутках между приемами пишц. Кстати, одной из основных причин проблемы г ,чности людей является го, что ткани способны накапливать гликоген ишь в ограниченном количестве. Как только содержание гликогена на ( кт ткани достигнет 50...60 г, он перестает синтезироваться, а глюкоза испо ппьзуется уже щя образования жиров, [c.265]

    Витамин D, антирахитический витамин, содержится в печени. Еще до того, как его удалось выделить и подробно изучитг., при облучении эргостерина ультрафиолетовым светом было получено антирахн-тическое вещество, отличное от витамина D печеночного жира (Виндаус, Гесс, Розенгейм). Оно было выделено из продуктов облучения в чистом кристаллическом виде (Бурдильон с сотр., Линсерт и Виндаус), и полученный препарат был назван кальциферолом (или витамином D2). Он плавится ири 115—116° его удельное вращение [а] + 82,6° (в ацетоне). [c.899]

    Многообразные функции печени обусловливают присутствие в ней самых разнообразных эндо- и экзогенных соединений. Это продукты белкового, углеводного и жирового обмена, биотрансформации экюгенных веществ (в том числе и токсичных), синтеза желчных кислот и т д Поэтому печень является одним из неудобных объектов для анализа и хранения. Даже после принятия всех необходимых мер, например глубокого замораживания, в конечном итоге не удается устранигь все пофешности, связанные с хранением и пробоподготовкой, при определении суперэкотоксикантов в печени. [c.203]

    Депротеинизация достигается также добавлением сульфата аммония и некоторых органических растворителей [23]. Основная опасность здесь заключается в возможности адсорбции или окклюзии следовых компонентов осадком. Эффективность операции нужно конфолировать в отношении биоматериала и определяемых веществ. Обычно влияние окклюзии сводят к минимуму не добавлением осаждающих агентов к пробе, а наоборот [24]. В последнее время для осаждения белков все чаще применяют ацетонитрил, особенно удобный в тех случаях, когда раствор далее анализируют методом ВЭЖХ Для предотвращения разложения белков следует избегать нафевания, либо использовать мягкие условия их разрушения с помощью ферментов [25]. С этой целью используют трипсин, папаини другие протеиназы. Ткани печени гидролизуют алкалазой, а [c.204]

    Коллоидная защита играет очень важную роль в ряде физиологических процессов, совершающихся в организмах человека и животных, Так, белки крови являются защитой для жира, холестерина и ряда других гидрофобных веществ. При некоторых заболеваниях содержание защитных белков в крови уменьшается, то приводит к отложению, например, холестерина и кальция в стенках сосуда (ар-тероскле чоз и кальциноз). Понижение защитной роли белков и других стабилизирующих веществ в крови может привести к образованию камней в почках, печени, протоках пищеварительных желез и т. п. С другой стороны, способность крови удерживать в растворенном состоянии большое количество газов (кислорода и углекислого газа) также обусловлена защитным действием белков. В данном -случае белки обволакивают микропузырьки этих газов и предохраняют их от слияния. [c.388]

    По аналогии с золями, гели в зависимости от характера дисперсионной среды делятся на гидрогели, алкогели, бензогели и т. д. Бедные лсидкостью или совершенно сухие студнеобразные вещества носят название ксерогелей. Примерами ксерогелей могут служить сухой листовой желатин, столярный клей (в плитках), крахмал. К типу сложных ксерогелей относят муку, сухари, печенье. Существуют студни, содержащие очень мало сухого вещества (1—2% И менее), например кисель, студень, простокваша, растворы мыл и мылообразных веществ. Такие богатые жидкостью студнеобразные системы называются лиогелями. [c.389]

    Хотя хлор используется для стерилизации воды долгие годы, не оказывая заметного вредного воздействия на здоровье людей, пользующихся такой водой, недавно обнаружено, что он все же может наносить некоторый вред здоровью. При исследовании источников воды в ряде американских городов было обнаружено наличие в них незначительных количеств хлороформа СНСЬ, и четыреххлористого углерода ССЦ. Известно, что эти вещества обладают токсическим действием. Хотя уровень их содержания в водопроводной воде чрезвычайно низок, не исключена возможность, что долговременное потребление воды, содержащей эти вещества, может приводить к заболеваниям печени и почек. Полагают, что эти вещества образуются в ре 5ультате реакций молекул органических загрязнителей воды с хлором при стерилизации воды. [c.159]

    ГЛИКОГЕН (животный крахмал) (СвН,о05)л — полисахарид, состоящий из остатков глюкозы имеет разветвленную структуру и содержит молекулы различной степени полимеризации. Г. распространен в организмах животных и представляет собой резервное питательное вещество для организма. Откладывается, главным образом, в печени и мышцах. Г. хорошо растворяется в горячей воде, образуя коллоидный растгор. Иод окрашивает Г. в красно-бурый цвет (в отличие от растительного крахмала, дающего синюю окраску). Г. гидролизуется с образованием глюкозы. [c.76]

    С,Н120в — самый распространенный моносахарид (углевод). Встречается в свободном состоянии особенно много ее в еиноградном соке, откуда другое название Г.— виноградный сахар. Г. входит в состав молекул крахмала, целлюлозы, декстрина, гликогена, мальтозы, сахарозы и многих других ди- и полисахаридов, из которых Г. получают как конечный продукт гидролиза. В печени человека из Г. синтезируется гликоген, в промышленности Г. получают гидролизом крахмала или клетчатки. При восстановлении Г. образуется шестиатомный спирт сорбит. Г. легко окисляется, дает реакцию серебряного зеркала. Г. широко применяется в медицине как вещество, легко усваивающееся организмом, при сердечных заболеваниях, шоковом состоянии, после операций. Г. [c.78]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    СЕРИИ (а-амино-р-оксипропионовая кислота) НОСН2СН (NHa) СООН — кристаллическое вещество, растворимое в воде, малорастворимое в спирте, т. пл. 228° С. С.— одна из важнейших природных аминокислот, входит в состав почти всех белков. Особенно много С. в фиброине и серинине шелка, есть С. в казеине. В печени из С. образуется цистин [c.223]

    ФОСФАТИДЫ (фосфолипиды) — сложные эфиры фосфорной кислоты и глицерина или сфингозина, которые связаны эфирной или амидной связью с одним или несколькими остатками высших жирных кислот. В зависимости от природы спирта, лежащего в основе химической структуры Ф., различают глицерофос-фатиды и сфингофосфатиды. Ф. входят в состав клеток и тканей всех живых организмов. Особенно велико их содержанне в нервной ткани, они есть в мозге, печени, мускулах, принимают участие в окислительных процессах живых организмов. Ф. вместе с холестерином и белками, участвуют в построении мембран клеток, обусловливают избирате,аьную проницаемость для различных соединений, активно переносят вещества через мембраны, играют важную роль в транспортировке жиров, жирных кислот и холестерина. Нарушение синтеза Ф. в организме ведет к развитию жирового перерождения печени. [c.264]

    ХОЛЕСТЕРИН С2,Н4( 0—одноатомный полициклический спирт, из группы стери-пов, пластинки с перламутровым блеском, жирные на ощупь, т. пл. 149 С нерастворим в воде, малорастворим в органических растворителях. В свободном состоянии и в виде сложных эфиров содержится в животных организмах. Особенно много X. в тканях нервной системы, кожном жире, желче, а больше всего в мозге, печени, почках. Из пищевых продуктов X. больше всего в животных жирах, желтках яиц и др. Многие вещества, играющие важную роль в организме,— производные X. (витамины, половые гормоны и др.). Нарушение обмена X. в организме вызывает ряд заболеваний (атеросклероз, холецистит и др.). X. впервые выделен из желчного камня, почти целиком состоящего из X. Нормальное содержание X. в крови человека составляет 160—200 мг в 100 мл. X. получают из спинного мозга животных, из жира, получаемого при промывке овечьей шерсти (ланолина) и др. [c.279]

    ХОЛИН [НОСНаСН Н+(СНз)з]ОН- — азотистое органическое соединение, содержится в растительных и животных организмах, бесцветные кристаллы, которые разлагаются при нагревании хорошо растворяется в воде. X. играет важную роль в обмене веществ и является важным фактором в питании животных и человека. Препараты X. в виде 20%-ного раствора холинхлорида применяют для лечения заболеваний печени (цирроз, гепатит). [c.279]

    Ксантин — кристаллическое вещество, трудно растворимое в воде, но легко растворимое в щелочах. Это объясняется тем, что группы ОН в енольной форме ксантина придают ему кислотные свойства. Ксантин обладает и слабыми основными свойствами — образует соли с сильными кислотами. Встречается в растениях (в чае), а также в животных организмах — в крови, печени, моче. [c.435]

    К механизмам, участвующим в сохранении изоосмии, нужно отнести свойство некоторых тканей (ткани печени, подкожной клетчатки) задерживать в себе, депонировать избыточные количества воды и солей, а также отнести способность организма быстро выводить с мочой и потом эти вещества. Особенно важная роль в поддержании изоосмии принадлежит почкам. Указанные процессы в организме регулируются прежде всего нервной системой и железами внутренней секреции. Колебания осмотического давления крови в целостном организме весьма незначительны (в пределах десятых долей атмосферы) даже в условиях тяжелой патологии. В этом отношении интересен эксперимент Гамбургера лошади вводили внутренно 7 л 5%-ного раствора глауберовой соли, что должно было вдвое повысить осмотическое давление крови. Однако в результате действия механизмов, сохраняющих изоосмию, давление повысилось незначительно, а через несколько минут снизилось почти до нормы. [c.27]


Смотреть страницы где упоминается термин Печень веществ: [c.40]    [c.17]    [c.486]    [c.15]    [c.55]    [c.28]    [c.22]    [c.186]    [c.256]    [c.295]    [c.315]    [c.574]   
Биологическая химия Изд.3 (1998) -- [ c.560 ]




ПОИСК







© 2025 chem21.info Реклама на сайте