Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны для электродиализа

    Электродиализ — диализ, обусловленный миграцией ионов через мембрану под действием приложенной разности потенциалов (электромиграцией). На рис. IV. 17 показана схема электродиализатора, представляющего собой сосуд, разделенный мембраной М, по обе стороны которой находятся электроды под напряжением постоянного электрического поля. Рассмотрим принципы электродиализа на примере переноса хлорной кислоты через различные мембраны. Если пропустить через водный раствор хлорной кислоты количество электричества, равное числу Фарадея (96 485 Кл/моль), то по закону Фарадея на электродах должно выделиться ио 1 экв элементов водорода и кислорода. При электродиализе на катоде (восстановление) исчезают ионы Н+, а на аноде (окисление) они накапливаются  [c.241]


    На рис. 4 приведена схема электродиализатора. При электродиализе мембраны несут электрический заряд, и может произойти смена ионного состава коллоидной дисперсии, соответственно изменяется и ее pH. Эти изменения обусловлены тем, что электрически заряженные мембраны неодинаково проницаемы для катионов и анионов. Для устранения этого эффекта мембраны, применяемые в электродиализе, могут обрабатываться различными веществами, уменьшающими их собственный заряд. Избирательные свой-сва мембран в некоторых случаях используют и для селективной очистки или для еще большего ускорения электродиализа, когда применяют две мембраны — анодную и катодную, изготовленные из материалов с различными зарядами. [c.16]

    С увеличением разности чисел переноса ионов в анодной и катодной мембранах возрастает скорость изменения концентрации электролита в средней камере. Можно повысить скорость электродиализа, применяя мембраны одного знака заряда, но разной электрохимической активности. При этом, если мембраны приготовлены из одного и того же материала и имеют отрицательный заряд поверхности, то мембрану с большим средним радиусом пор ставят на анод. В случае двух положительно заряженных мембран анодная мембрана должна иметь меньший радиус пор по сравнению с катодной. Наиболее эффективно процесс электродиализа будет идти с идеально электрохимически активными мембранами разного знака заряДа. В этом случае разность чисел переноса ионов электролита в анодной и катодной мембранах достигает максимальной вели--чины, т. е.. единицы. [c.227]

    Очистка сточных вод электродиализом основана на разделении под действием электродвижущей силы анионов и катионов. В электродиализаторе имеются анионо- и катионообменные мембраны. Метод широко применяется для опреснения соленых йод. С его помощью очищают сточные воды от соединений фтора и хрома при степени обессоливания 75—80 %, от радиоактивных загрязнений— при снижении активности на 99%. Срок службы мембраны зависит от загрязненности сточных вод взвешенными частицами и составляет 2—5 лет. [c.495]

    Такое разделение мембран, применяющихся при электродиализе, является относительным вследствие того, что изменение чисел переноса ионов в мембране зависит также от природы электролита и концентрации раствора, которая изменяется в процессе электродиализа. С уменьшением концентрации электролита электрохимическая активность мембран возрастает, и, кроме того, мембраны электрохимически неактивные в концентрированных растворах могут оказаться электрохимически активными в разбавленных растворах. [c.225]


    Расход электроэнергии можно значительно уменьшить, проводя электродиализ в многокамерном аппарате и используя ионитовые мембраны. В таком аппарате между двумя электродами попеременно чередуются большое число катионитовых и анионитовых мембран. При электродиализе во всех четных камерах (независимо от их числа) произойдет очистка раствора, так как анионы легко пройдут через расположенные на их пути анионитовые мембраны, а катионы — через катионитовые. В нечетных камерах, наоборот, произойдет концентрирование ионов растворенных солей, вследствие обратного расположения мембран в этих камерах (рис. 96). [c.230]

    При проведении электродиализа до недавнего времени применяли различные пористые мембраны. Отрицательно заряженных мембран известно много, например керамические, пергаментные, целлофановые, коллодиевые и др. Выбор положительно заряженных мембран был весьма- ограничен. [c.227]

    К современным прогрессивным методам деминерализации и концентрирования растворов относится электродиализ. Метод основан на направленном переносе ионов диссоциированных солей в поле постоянного тока через ионоселективные мембраны. Электродиализ получил широкое практическое распространение, однако область его применения ограничивается опреснением воды с концентрацией солей в диапазоне 1,5... 15 г/л. [c.6]

Рис. 107. Изменение концентрации иона 1 в средней камере при электродиализе раствора КС1 в зависимости от разности чисел переноса иона С1" через анодную и катодную мембраны и их расположения в трехкамерном аппарате. Рис. 107. <a href="/info/362997">Изменение концентрации иона</a> 1 в средней камере при <a href="/info/312529">электродиализе раствора</a> КС1 в зависимости от разности чисел <a href="/info/4026">переноса иона</a> С1" через анодную и <a href="/info/776361">катодную мембраны</a> и их расположения в трехкамерном аппарате.
    Результат опыта. В момент включения электродиализатора в цепь сила тока в ней очень мала, но постепенно она возрастает в результате перехода электролитов из средней камеры через целлофановые мембраны. Таким образом, по изменению силы тока можно судить о ходе процесса электродиализа. [c.161]

    Пористые полупроницаемые мембраны, применяемые для диализа, электродиализа, ультрафильтрации и осмометрии, как правило, не являются инертными чисто механическими ситами для растворенных или взвешенных частиц. Роль мембран значительно сложнее и определяется рядом их свойств. Так, проницаемость мембраны может быть обусловлена не столько наличием в ней пор и капилляров, сколько растворением переносимых через нее веществ в самом веществе мембраны. Такой механизм проницаемости называют фазовым или гомогенным. Особенно сильно этот механизм проницаемости проявляется в тонкопористых медленно фильтрующих материалах. [c.422]

    Для проведения электродиализа применяют различной конструкции аппараты, называемые электродиализаторами. Основой таких аппаратов является трехкамерная ячейка, среднее пространство которой отделено от крайних электродных камер мембранами. Подлежащий очистке коллоидный раствор помещают в среднюю камеру, в то время как крайние камеры наполняют водой. Мембрана, расположенная у отрицательного электрода называется — катодной, а у положительного — анодной. Следует обращать большое внимание на выбор материала для анода, чтобы избежать анодного растворения и переноса ионов металла через анодную мембрану в среднюю камеру. В связи с этим в качестве анода обычно употребляют платину или графит. В качестве катода могут служить различные металлы — железо, никель, медь. [c.223]

    Метод электродиализа обеспечивает более полное и быстрое удаление электролита. Метод состоит в том, что золь помещают в сосуд с двумя полупроницаемыми мембранами (перегородками), рядом с которыми в чистой воде расположены электроды (рис. 3.34, б). Под действием электрического поля ионы электролита проходят через мембраны к соответствующим электродам и уносятся проточной водой. По такому принципу работают электродиализаторы. [c.154]

    В-третьих, может наблюдаться электроосмос через мембраны. Направление движения жидкости при электроосмосе зависит от знака заряда мембран и расположения их по отношению к электродам в электродиализаторе. Поэтому электроосмотический перенос жидкости может быть направлен как из средней камеры в электродные, так и наоборот. В результате может значительно изменяться объем раствора в средней камере. Если жидкость движется из электродных камер, где в процессе электродиализа образуются кислота и щелочь, в среднюю камеру, то вследствие этого там также может произойти изменение состава электролита. [c.224]

    В настоящее время при проведении электродиализа широко применяют ионитовые мембраны, т. е. мембраны из ионообмен- ных смол (стр. 125). Такие мембраны по свойствам приближаются к идеально электрохимически активным и обладают малым электросопротивлением. Из ионообменных смол можно готовить как положительно, так и отрицательно заряженные мембраны. Для приготовления отрицательно заряженных мембран используют катиониты положительно заряженные мембраны готовят из анионитов. [c.227]


    Следующий шаг вперед был сделан В. В. Стендером с сотрудниками. Они воспользовались методикой подсчета, данной Бете и Тороповым, и подробно рассмотрели процесс электродиализа для системы, реально осуществлявшейся в трехкамерном электродиализе, а именно в средней камере — раствор соли, в анодной камере — р аствор кислоты, а в катодной — раствор щелочи. В. В. Стендер подразделял мембраны на изменяющие числа переноса ионов, которые он назвал электрохимически активные , и на не изменяющие числа переноса — электрохимически неактивные . Он рассмотрел процесс электродиализа с электрохимически неактивными мембранами в системе раствор кислоты I раствор соли раствор щелочи как простой электролиз, предположив, что в процессе электродиализа поры анодной мембраны пропитаны раствором кислоты из анодной камеры, а поры катодной — раствором щелочи из катодной камеры. А. В. Маркович объединил все эти положения, дополнил их и дал общую теорию процесса электродиализа, основывающуюся на соотношениях чисел переноса. А. В. Маркович разделяет мембраны, применяющиеся в электродиализе, на три группы. [c.171]

    Первоначально для электродиализа использовали те же мембраны, что и для диализа, т. е. коллодий, целлофан и т. д. Однако ряд факторов осложняет очистку электродиализом. Один из них — собственный заряд мембраны. Чаще всего целлюлозные мембраны приобретают отрицательный заряд, и катионы легче проходят сквозь них, чем анионы. По этой причине иногда наблюдается снижение водородного показателя среды при очистке. Другой фактор — электрическая проводимость мембран. Мембраны из целлофана и коллодия отличаются низкой электрической проводимостью, вследствие чего повышается общее электрическое сопротивление в аппарате и уменьшается скорость движения ионов. Для ускорения очистки мембраны часто изготовляют из ионообменных смол, электрическое сопротивление которых в воде значительно ниже такового пленок из коллодия и целлофана. [c.26]

    Ускорение процесса диализа достигается наложением электрического поля (электродиализ), при этом также повышается эффективность разделения, особенно в конце, когда неравенство концентраций ионов по обеим сторонам мембраны становится меньше. Подвергаемый диализу раствор вводят в среднюю из трех камер, где его тщательно перемешивают. Две мембраны отделяют среднюю камеру от боковых камер, в которых расположены электроды. Через боковые камеры непрерывно поступает чистый растворитель. При прекращении перемешивания раствора в средней камере диализатора коллоидные частицы, имеющие собственный заряд или приобретающие заряд в процессе адсорбции ионов, движутся в электрическом поле и накапливаются у одной из мембран, где вследствие увеличения концентрации и плотности опускаются на дно диализатора и могут быть в дальнейшем отделены (процесс электродекантации). При помощи диализа можно разделить небольшие частицы растворов электролитов и частицы коллоидных растворов или высокополимерных веществ. Диализ позволяет определить молекулярный вес соединений и контролировать процессы образования молекулярных ассоциатов, сольватов и т. д. Применяя мембраны соответствующей пористости, можно проводить разделение частиц коллоидных растворов различной величины (ультрафильтрование) [77]. [c.386]

    Следует отметить, что если даже очищаемые объекты и не являются дисперсными системами, оба метода (обратный осмос и электродиализ) являются типичными коллоидно-химическими процессами, поскольку основу разделения составляют высокодисперсные мембраны. [c.27]

    Рассмотрим классическую схему трехкамерной ячейки для электродиализа (рис. XII. 24). Пусть все три камеры, разделенные двумя мембранами, заполнены одним и тем же раствором электролита (КС1). Если мембраны не изменяют и,, очевидно, что прохождение тока не изменит с в средней камере. В случае же электрохимически активных мембран с различным знаком заряда, расположение их по схеме а приведет к очистке раствора в средней камере от электролита, тогда как обратное расположение (схема б) — к увеличению концентрации соли в средней камере. [c.217]

    Способность изменять числа переноса ионов является важнейшим параметром мембран. В настоящее время для электродиализа применяют мембраны, изготовленные из катионитов (МК-40 и др.), и анионитов (МА-40 и др.), обладающие практически униполярной проводимостью, с iZi = 1 для противоиона (идеально селективные). При помощи электродиализа удается довести содержание ионов в воде (например, речной) или в коллоидном растворе до 10 — 10 н. Теоретическое и экспериментальное исследование электродиализа проведено в работах Жукова, Григорова и Марковича — авторов первой отечественной опреснительной установки [3, с. 272]. В настоящее время широко применяют многокамерные проточные промышленные установки. [c.217]

    Поляризация на границах мембран с растворами (граничная поляризация), исследованная в работах Сидоровой и Фридрихсберга , играет больщую роль в электроосмосе, электродиализе и переносе ионов через капиллярные системы. Показано, кроме того, что диффузия электролита в процессе поляризации приводит к значительному увеличению концентрации его в порах ( отравлению мембраны) .  [c.218]

    Применяя мембраны, изменяющие числа переноса, т. е. электрохимически активные, можно значительно ускорить процесс электродиализа. Если поставить отрицательно заряженную мембрану на катодную сторону трехкамерного диализатора, то такая диафрагма будет увеличивать число переноса катионов, а положительно заряженная мембрана на анодной стороне будет увеличивать число переноса анионов. Таким образом можно значительно увеличить разницу чисел переноса ионов между диафрагмами. Такие диафрагмы называют идеально электрохимически активными. Разница между числами переноса в этом случае доходит до единицы, и выход по току достигает 100%. [c.258]

    Более подробные сведения по ионнтовым мембранам можио найти в следующих источниках 1. Деминерализация методом электродиализа. Ионитовые мембраны, перев. с англ. под ред. Б. Н. Ласкорина н Ф. В. Раузе н, Госатомиздат, 1963. — 2. Б. И. Л а-с к о р и и, Н. М. Смирнова, М. Н. Г а н т м а и. Ионообменные мембраны и их применение, Госатомиздат, 1961.—3. Б. Н. Л а с к о р н н, И. М. Смирнова, ЖПХ, XXXIV, вып. 8 (1961), [c.167]

    Если мембрана нейтральная, то числа переноса для раствора НСЮ4 равны /р + " /б ч С10- = /б- В соответствии с этим в катодном пространстве в результате восстановления количество ионов Н+ уменьшается на I экв Н+, поступает из анодного пространства V5 экв Н+ и уходит в анодное пространство экв С10 . В итоге из катодного пространства уйдет Д экв НСЮ4. В анодном пространстве в результате окисления появится 1 экв Н+, уйдет в катодное пространство V5 экв Н+ и придет из катодного пространства /5 экв СЮ4. В итоге в анодном пространстве появится Чь экв НС1О4. Таким образом, при электродиализе с нейтральной мембраной происходит накопление хлорной кислоты в анодном пространстве. [c.242]

    Рассмотрим характер процесса электродиализа с мембра-( нами различного типа. Чтобы оценить значение природы мембраны в процессе электродиализа, представим себе, что во всех трех камерах электродиализатора находится один и тот же раствор электролита, например сернокислого натрия, причем в электродных камерах при условии непрерывного протекания раствора Ыа2304 концентрация его не изменяется. При такой постановке опыта в случае применения электрохимически неактивных мембран в средней камере не может происходить никаких изменений в составе и концентрации электролита. Действительно, вследствие равенства чисел переноса ионов в порах мембраны и в свободном растворе взамен ионов, уходящих через [c.225]

    Однако число таких детально изученных систем до настоящего времени весьма невелико. Кроме того, для реальных пористых тел, использующихся как мембраны в практических целях (например, для электродиализа), эти примеры не имеют большого значения. Для получения мембран определенного знака заряда К. Мейер путем добавления к раствору ацетилцеллюлозы [СбН702(0С0СНз)з]ж различных веществ получил мембраны кислого, амфотерного и основного характера. Так, добавление к раствору ацетилцеллюлозы полиакриловой кислоты (СНг=СН СООН)ас приводило к тому, что полученные мембраны имели кислый характер, т. е. были отрицательно заряжены. Мембраны амфотерного характера получались путем добавления к раствору ацетилцеллюлозы продукта конденсации триэтанола- [c.153]

    В таком приборе можно было легко создать условия, соответствующие первому режиму по теории А. В. Марковича, т. е. поддерживать постоянным любой состав и концентрацию раствора в боковых камерах (4 и 5), регулируя приток раствора из запасных бутылей (1 и 2). В результате этих опытов выяснилось, что действительно, согласно предположениям при ведении электродиализа с двумя грубопористыми коллодиевыми мембранами, не изменяющими чисел переноса, концентрация электролита в средней камере оставалась постоянной при длительном пропускании электрического тока. При помещении мембраны с относительно большим числом переноса катиона на катодную. сторону и с меньшим — на анодную происходило уменьшение концентрации электролита в средней камере (рис. 106, кривая 1). При обратном расположении мембран наблюдалось не уменьшение, а увеличение концентрации раствора в средней камере (рис. 106, кривая 2). [c.173]

    Для того чтобы иметь представление о соотношениях между диффузией, электроосмосом и электролизом в процессе электродиализа, рассмотрим электродиализ при режиме, когда все три камеры электродиализатора наполнены раствором K l одинаковой концентрации. В процессе электродиализа с двумя электрохимически активными мембранами (с разницей чисел переноса между ними) будет происходить уменьшение концентрации КС1 в средней камере. Если мы имеем дело с двумя отрицательно заряженными мембранами (в данном случае двумя коллодиевыми различной пористости), то электроосмотический перенос раствора будет направлен из анодной камеры в среднюю и из средней камеры в катодную. При этом, очевидно, следует учесть только диффузию из анодной камеры в среднюю, но не из катодной камеры в среднюю, так как в последнем случае она направлена против электроосмотического переноса. Поправка на электроосмотический перенос вводилась нами на основании результатов параллельных опытов по злектроосмосу для анодной и катодной мембраны. Зная количество перенесенного раствора на V [c.180]

    Сб. Деминерализация методом электродиализа (ионитовые мембраны), пе ревод с английского, под ред. Б. Н. Ласкорина и Ф. В. Раузен. М. 1963. [c.197]

    Ионообменные мембраны. Иониты на основе искусственных смол, выпускаемые промышленностью в виде пленок или пластин, называют ионообменными мембранами. Ионогенными группами мембран являются сульфо-группы или остатки четвертичных оснований. Вследствие высокой плотности зарядов мембраны проявляют свойства селективных ионитов. При прохождении через мембрану ионы, имеющие одинаковый заряд с ионами мембраны, отталкиваются ею. По способу изготовления различают гомогенные и- гетерогенные мембраны. Гомогенные мембраны изготовляют методами литья из гелей ионитов. Для повышения механической прочности мембран их осаждают на носителях, таких, как стекловолокно или текстильные волокна. При изготовлении гетерогенных мембран спрессовывают тонкоизмельчен-ные гранулы ионита с инертным связующим (коллодионная пленка). Эти мембраны находят применение при определении активностей ионов и в электродиализе. [c.379]

    Электродиализ. Удаление ионных примесей из растворов электрохимическим методом с использованием мембран или диафрагм получило название электродиализа. Рассмотрим удаление сульфата натрия из воды в электродиализаторе с ионообменными мембранами. Простейший электродиализатор (рис. Х1У.З) состоит из трех отделений, разделенных двумя ионообменными мембранами, и двух электродов. Мембрана состоит из ионообменного материала, способного пропускать через себя либо катионы (ка-тионитовая мембрана — Мк), либо анионы (анионитовая мембрана— Ма). Вода, содержащая сульфат натрия, подается в среднее отделение электродиализатора. При подводе напряжения ионы натрия и водорода через катионитовую мембрану двигаются к катоду К, а сульфат-ионы и ионы гидроксида через аниони-товую мембрану — к аноду А. [c.380]

    Использование ионообменных мембран в анализе Ионообменной (ионитовой) мембраной называют пленку, полученную из ионообменной смолы. Находясь в растворе электролита, ионитовые мембраны избирательно пропускают ионы только одного знака заряда, а именно катионитовые мембраны пропускают только катионы, анионитовые — анионы. Это свойство ионитовых мембран используют для разделения катионов и анионов, а также для их отделения от неэлектролитов методом электродиализа. Центральную часть электродиализатора, в которой находится анализируемый раствор, отделяют от анодной части анионитной, а от катодной — катионитной мембраной. В процессе электродиализа к аноду мигрируют только анионы, так [c.205]

    Наложение давления на систему, где мембрана разделяет два раствора, также создает поле сил, порождающих потоки через мембрану. Силовое поле неизбежно вызывает поляризацию в высокодисперсных системах как электрическую (индуцированные диполи), так и концентрационную. Аналогично электродиализу, где поле порождает поток электричества (электрический ток), наложение давления создает поток массы жидкости (фильтраг(ию) и вызывает концентрационную поляризацию. Потенциал течения выравнивает ионные потоки противоионов и Кононов (стр. 201), но они отстают от потока растворителя, происходит задержка электролита перед входом в мембрану, разбавление на выходе, и профиль концентрации становится сходным с представленным на рис. ХП. 23, если внешнее поле отсутствует, а фильтрационный поток направлен справа налево. Явление задержки электролита при фильтрации через мембрану называется гиперфнльтра-цией или обратным осмосом (поскольку давление направлено навстречу возникающему осмотическому потоку) и приобретает огромное, все возрастающее значение для опреснения природных вод (см. гл. XVlH). [c.219]

    Ковалев И.В., Никоненко В.В., Письменская Н.Д. Структура диффузионного слоя в мембранной системе при электродиализе в запредельном режиме. Тез. докл. Всероссийской науч. конф. "Мембраны-2001", Москва, 2-5 октября, 2001 г. С. 180. [c.67]

    ЭЛЕКТРОДИАЛИЗ, метод разделения ионизированных соед. под действием электродвижущей силы, создаваемой в р-ре по обе стороны разделяющей его мембраны (М.). Использ. неселективные М., проницаемые для любых ионов (для отделения электролитов от неэлектролитов), и селективные, проницаемые только для катионов или только для анионов (для обессоливания р-ров электролитов или фракционирования ионов). Аппараты с селективными М. (см. рис.) состоят из ряда камер, по к-рым под давл. перемещаются р-ры электролитов. В крайних камерах расположены электроды. При прохождении электрич. тока через пакет М. катионы перемещаются к катоду, анионы — к аноду. Поскольку катионообменные М. пропускают только катионы, а анионообменные — только анионы, камеры поочередно обогащаются и обедняются электролитом. В результате исходный р-р электролита удается разделить на два потока— обессоленный и концентрированный. Разделение ионов с одинаковым знаком заряда происходит в результате различия между скоростями их переноса через М. [c.696]


Смотреть страницы где упоминается термин Мембраны для электродиализа: [c.203]    [c.225]    [c.169]    [c.170]    [c.170]    [c.176]    [c.177]    [c.206]    [c.234]    [c.65]   
Смотреть главы в:

Введение в мембранную технологию -> Мембраны для электродиализа




ПОИСК





Смотрите так же термины и статьи:

Электродиализ



© 2025 chem21.info Реклама на сайте