Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индикаторы излучений

    Фотопленку просто и удобно использовать при проведении неразрушающего контроля в мелкосерийном и единичном масштабе, а его результаты легко сохранять долгое время. Применение фотопленки обеспечивает высокую дефектоскопическую чувствительность при различной толщине полуфабрикатов и изделий. Недостатками применения фотопленки в неразрушающем контроле, как индикаторе излучения, являются длительность процесса ее обработки ( мокрый способ) и использование драгоценного металла — серебра. В связи с этим ведутся усиленные исследования возможностей других материалов в качестве регистраторов ионизирующих [c.303]


    Выбор источника излучения обусловлен материалом и толщиной полуфабриката или изделия, а также используемым индикатором излучения. Характерные области применения некоторых источников излучения, имеющие наибольшее распространение, указаны в табл. 7.12. Для каждого материала и источника излучения существует предельная толщина просвечивания и рекомендуемый режим просвечивания [1, 2]. Чем больше толщина контролируемого объекта, тем более жесткое излучение (с большей энергией квантов) надо использовать. Часто для сравнения говорят о предельной толщине просвечивания по стали , что объясняется широким применением сплавов железа в качестве конструкционного материала и легкостью определения по этому значению предельных толщин для полуфабрикатов из других материалов. При организации радиационного контроля качества должен учитываться и экономический фактор, в частности сравнительно низкая стоимость радиоизотопных источников. Получающие все большее применение во всех отраслях промышленности пластмассы, синтетические и композиционные материалы обычно имеют малый линейный коэффициент ослабления ц. Для увеличения эффективности взаимодействия при их контроле используют низкоэнергетические излучения. [c.315]

    К другому типу относятся приборы, применяемые для быстрого и чувствительного обнаружения радиоактивных загрязнений такие приборы называются радиометрами или индикаторами излучения (рис. 79, 80). В индикаторных приборах обычно исполь- [c.103]

    При измерениях методом обратного рассеяния препарат Р-излучателя и индикатор излучения располагают по одну сторону от рассеивающего материала. Установку необходимо располагать таким образом, чтобы в головку сцинтиллятора не попадало прямое излучение, возможно большая часть рассеянных лучей достигала индикатора и поблизости не было никаких веществ, вызывающих рассеяние и могущих исказить результат. [c.175]

    Переносный индикатор излучения размещен в корпусе, имеющем форму пистолета (рис. 89) в корпусе смонтированы схема индикатора, малогабаритный галогенный счетчик СТС-10 и батарея питания. [c.189]

    Оптико-акустический индикатор представляет собой неселективный приемник лучистой энергии, предназначенный для анализа газов. Устройство этого приемника несложно (рис. 3.5,а). Лучистый поток I, цро Модулированный диском 2, через флюорито-вое окно 5 попадает в камеру 4 с исследуемым газом 5. Под воздействием лучистого потока давление газа на мембрану 6 меняется, создавая в микрофоне 7 электрические сигналы. Сигналы с микрофона подаются в усилитель 8 и репродуктор 9. Сигнал в цепи микрофона зависит от состава газа. В качестве индикатора излучения может служить непосредственно мембрана 6, если ее поверхность покрыть сажей. В этом случае мембрана под воздействием лучистого потока нагревается и, прогибаясь, создает в микрофоне 7 электрические токи. [c.111]


    Радиационное облучение, с одной стороны, вызывает образование объемных зарядов в диэлектрике [126], а с другой, способствует разряжению заряженных диэлектриков. На последнем эффекте основано применение электретов в качестве индикаторов излучения (см. гл. VII). Заряженные частицы, проникая в полимерный образец и поглощаясь в нем, будут вызывать Оэфф только в том случае, если они распределены неравномерно по толщине, несимметрично. [c.65]

    Для определения фосфора в сталях применялся также кварцевый монохроматор со счетчиком фотонов в качестве индикатора излучения [12.19]. Интервал определяемых концентраций 0,01—0,8% Р. Аналитическая линия Р I А, = 2136,2 Л. Спектр возбуждается дугой переменного тока. Погрешность, как и в предыдущем методе, составляет около 10%. Анализ занимает 3—4 мин. [c.211]

    Основными индикаторами излучения являются человеческий глаз, фотографическая пластинка, термоэлемент и фотоэлемент. [c.72]

    Приборы, в которых используются фотоэлементы с внешним фотоэффектом (например, ФЭК-Н-57, ФЭК-56), также необходимо перед работой настраивать на Т, равное 0%, при полностью закрытых фотоэлементах ( темповой ток ). Для этого.предварительно освещают фотоэлементы в течение 20 мин, затем потоки излучений перекрывают шторкой и приводят в нулевое положение прибор-индикатор, пользуясь соответствующим потенциометром. [c.472]

    Возможность применения радиоактивных атомов как индикаторов определяется двумя особенностями этих атомов. До распада радиоактивные атомы в химическом отношении практически ничем не отличаются от основных нерадиоактивных. После распада свойства атомов меняются, но возникающее при этом излучение дает возможность обнаруживать распадающиеся атомы. Методы обнаружения радиоактивных атомов в настоящее время хорошо отработаны, а чувствительность соответствующих приборов очень высока. Так, с помощью счетчика Гейгера можно легко определить 10- г радиоактивного иода ( Л) с периодом полураспада 8,0 суток. [c.369]

    Кинетика радиоактивных процессов. Используя радиоактивные изотопы в качестве индикаторов хода того или другого процесса при количественной характеристике его по изменению интенсивности излучения, необходимо учитывать, что вследствие постепенного разложения взятого изотопа интенсивность излучения непрерывно уменьшается, в связи с чем в опытные данные приходится вносить соответствующие поправки. При этом надо учитывать и то, что получающиеся в результате распада взятого [c.546]

    Микроволновые и радиочастотные спектры. В отличие от оптических спектральных приборов в радиоспектроскопе нет диспергирующего устройства, подобного призме или дифракционной решетке. Радиоспектроскоп — полностью электронный прибор очень высокой чувствительности. Его обязательными частями являются источник излучения, отражательный клистрон (область с V — = 1,5 — 0,5 см ), поглощающая ячейка, прибор для измерения частоты, детектор излучения СВЧ, усилитель детектированной мощности и индикатор. [c.150]

    ВИЮ УФ-излучения (3650 А), при этом индикатор указывает границы между ароматическими (голубое свечение) и непредельными (желтое свечение) углеводородами. По длине зон, занятых группами углеводородов, рассчитывают их содержание в топливе [c.141]

    Николаев А. В. и др., Всесоюзная научно-техническая конференция XX лет производства и применения изотопов и источников ядерных излучений в народном хозяйстве СССР . Секция Метод изотопных индикаторов в научных исследованиях и промышленном производстве . Тезисы докладов, Атом-издат, 1968, стр. 47. [c.197]

    Фототок, возникающий в фотоэлементе под влиянием падающего излучения, передается на усилитель постоянного тока. Усиленный ток попадает на прибор-индикатор (миллиамперметр). [c.79]

    Контроль за хроматографическим разделением анализируемых смесей можно осуществлять различными способами. Если разделяемые вещества окрашены, то анализ веществ можно проводить непосредственно (визуально) на колонке в слое адсорбента появляются окрашенные зоны (слои). Если же вещества не-окрашены, но люминесцируют (при освещении их УФ излучением) или вызывают флюоресценцию некоторых индикаторов, вводимых предварительно в адсорбент, то идентификация таких веществ также не представляет особого затруднения. Можно регистрировать разделяемые вещества непосредственно после выхода из колонки. Например, для веществ, обладающих кислыми свойствами, можно использовать цветную реак- цию с индикатором. Иногда проводят анализ каждой порции элюата с помощью различных физико-химических методов (спектрофотометрического, потенциометрического, рефрактометрического и др.). [c.158]

    Наиболее удачной является четвертая схема (рис. Д.152,г). Свет от источника излучения через систему зеркал с помощью модулятора попеременно подают на две кюветы и затем на фотоэлемент. При одинаковом поглощении света растворами в обеих кюветах на фотоэлемент попадает постоянный поток света, при разном поглощении — переменный. В этом случае его нужно преобразовать в постоянный с помощью устройства, ослабляющего световой поток (диафрагма). Фотоэлемент служит нуль-индикатором и поэтому не оказывает влияния на точность измерений. Такой метод называют методом с модуляцией светового потока. [c.365]


    Разработано множество методов обнаружения излучения, испускаемого радиоактивными веществами. Беккерель открыл радиоактивность благодаря воздействию радиоактивного излучения на фотографические пластинки. Долгое время для обнаружения радиоактивности использовали фотографические пластинки и пленку. Радиоактивное излучение действует на фотографическую пленку точно так же, как обычный свет. Фотопленку можно использовать и для установления количественной меры радиоактивности. Чем больще экспозиция (воздействие) излучения, тем плотнее потемнение на проявленном негативе. Те, кто работает с радиоактивными веществами, носят на себе в качестве индикатора фотопленку, которая регистрирует количество получаемого ими облучения. [c.258]

    Рассмотренный вари.ант метода радиоактивных индикаторов требует применения изотопов с мягким р-излучением С, 55 и ограничен областью концентраций органического вещества [c.29]

    Все варианты метода радиоактивных индикаторов дают тем более точные результаты, чем ниже Со-рг и чем более развитую поверхность имеет исследуемый электрод. Последним обстоятельством объясняется то, что большая часть наиболее надежных данных по адсорбции органических веществ получена методом радиоактивных индикаторов на электродах из металлов группы платины. Как уже указывалось выше, адсорбция на этих металлах сопровождается деструкцией молекул органических веществ. Однако радиоактивные методы в случае адсорбции соединений, меченных изотопом С, дают лишь общее количество адсорбированного углерода безотносительно к составу адсорбированных частиц. С другой стороны, если исследуемое органическое вещество содержит два различных меченых атома (например, С и 3 5), то методом радиоактивных индикаторов можно зафиксировать деструкцию таких молекул, а также соотношение в энергиях связи этих атомов с поверхностью электрода. Использование анализаторов радиоактивного излучения позволяет изучать адсорбцию соединений, содержащих несколько различных меченых атомов. [c.32]

    Импедансный метод основан на изменении режима колебаний преобразователя под влиянием изменения механического импеданса 5н ОК в зоне контакта с преобразователем. Структурная схема импедансного дефектоскопа показана на рис. 3.25. Преобразователь представляет собой стержень 5, на торцах которого размещены возбуждающий колебания 2 и измерительный 6 пьезоэлементы. Между ОК 11 и пьезоэлементом 6 находится контактный наконечник 9 со сферической поверхностью. Пьезоэлемент 2 соединен с генератором 4 синусоидального электрического напряжения, пьезоэлемент 6 — с усилителем 10. Масса 3 повышает мощность излучения в стержень 5. Генератор и усилитель соединены с блоком 7 обработки сигнала с индикатором 8 на выходе. Блок 7 управляет сигнальной лампочкой 1 и самописцем (на рисунке не показан), регистрирующим дефекты при использовании прибора в системах механизированного контроля. [c.226]

    Применение радиоактивных изотопов развивается в нескольких направлениях в качестве радиоактивных индикаторов — меченых атомов, источников ядерных излучений, в приборах, в радиохимических процессах и др. [c.73]

    Определение проводят в приборе (рис. 139). Излучение от источника попадает в две ионизационные камеры, соединенные противоположными полюсами через индикатор нулевого тока 3. В одну ионизационную камеру излучение попадает через поглотитель постоянной толщины, а в другую — через испытуемый образец 5 и подвил<ный клин 4. Положение клина калибруется в единицах отношения Н С. В результат измерения вносится поправка на изменение р. Точность определения составляет 0,03%. [c.363]

    Изотопы применяются в геологии. Радиоактивные индикаторы могут быть применены для исследования движения подземных вод. В одну скважину вводят радиоактивный индикатор, а в других скважинах определяют изменение радиоактивности. В нефтяной промышленности изучение горных пород и технического состояния скважин методом изотопов (меченых атомов) осуществляется путем закачки в скважину жидкости, в частности бурового раствора, содержащего тот или иной радиоактивный индикатор. После закачивания измеряется у-излучение, создаваемое распадом атомов радиоактивного элемента. Активированный раствор, поступая в различных количествах в породы, отличающиеся своими коллекторскими свойствами, и проникая в места нарушения колонн, дает возможность установить характер пластов и состояние колонны. [c.24]

    В том случае, когда изотоп-индикатор испускает мягкое излучение и нет возможности получать колоночные кривые (излучение не проникает через стенки колонки), приходится пользоваться способом выходных кривых. Для этого необходимо получить серию выходных кривых элю-ции для нескольких колонок различной длины. [c.130]

    Другой широко распространенной группой детекторов, применяющихся во многих марках газовых хроматографов, являются детекторы, действие которых основано на измерении тока, з/ юат проходящего через ионизированный газ между двумя электродами. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме либо в пламени при наличии электрического поля или под действием радиоактивного излучения. Наиболее распространен пламенно-ионизационный детектор. Работа его основана на том, что пламя чистого водорода почти не содержит ионов и поэтому обладает очень малой электропроводностью (фоновый ток порядка Ю А). При наличии газов или паров анализируемых веществ (за исключением СО, СО2, OS, Sj, H.jS, О2, Н2О, инертных газов) происходит ионизация пламени, возникают ионы и радикалы, электропроводность пламени резко возрастает (ток порядка 10- А), что и служит индикатором на присутствие в газе-носителе анализируемых веществ. Схема одного из пламенно-ионизационных детекторов приведена на рис. 38. Элюат смешивают с водородом и подают в сопло горелки, куда поступает очищенный воздух. Горение [c.93]

    Многие слабые кислоты и продукты их диссоциации избирательно поглошают излучение видимой области спектра и поэтому окрашены. Цвет раствора, содержащего кислоту и ее анион, определится отношением их концентраций, которые зависят от константы диссоциации кислоты и от pH раствора. Слабые кислоты, одна или обе формы которых окрашены, применяют в качестве кислотно-основных индикаторов. По изменению окраски индикатора можно определить pH раствора или установить точку эквивалентности при кислотно-основном титровании. [c.598]

    В научных исследованиях — в химии, медицине, биологии, металловедении и др. — при определении переходов вещества или элемента из одного материала (соединения, раствора, сплава, ткани растения, органа тела и т. п.) в другой также используют радиоактивные изотопы. При этом к химическому соединению, используемому в исследовании, примешивают определенное количество такого же соединения, но содержащего атомы радиоактивного изотопа. Химическое поведение последних практически ничем не отличается от поведения стабильных изотопов. Радиоактивные изотопы своим излучением метят вещество, интересующее исследователя, указывают на его присутствие. Поэтому такой прием обнаружения веществ получил название метода меченых атомов или метода радиоактивных индикаторов. [c.33]

    В годы второй мировой войны в связи с потребностями радиолокационной техники были разработаны детекторы из германия и кремния. Исследование этих полупроводниковых материалов привело американских ученых Бардина и Браттейна в 1948 г. к созданию транзистора, теория которого была разработана В. Шокли. С этого времени начинается промышленный выпуск многих типов полупроводниковых приборов и, в первую очередь, диодов,, усилительных триодов, мощных выпрямителей, индикаторов излучения, а также преобразователей световой и тепловой энергии в электрическую. За последние годы на основе полупроводников созданы магниточувствительные приборы, измерители механических деформаций, излучатели света и в том числе квантовые генераторы — лазеры, позволяющие получать направленный луч света высокой интенсивности. Одним из весьма перспективных направлений является использование полупроводников в качестве управляемых катализаторов химических реакций. [c.10]

    Прибор состоит из поплавка с точечным т-излуча-телем (Со активностью 1,5 —2 мг-экв Ка) и переносного индикатора излучения с визуальной индикацией. [c.189]

    Радиационное облучение, с одной стороны,чвызывает образование объемных зарядов в диэлектрике [47, с. 149], а с другой — способствует разряжению заряженных диэлектриков. На последнем эффекте основано применение электретов в качестве индикаторов излучения (см. гл. VIH). [c.50]

    АСПВ допускает воспламенение взрывоопасной газовой смеси и включается сразу же после возникновения взрыва. Принцип действия системы состоит в следующем. После воспламенения взрывоопасной горючей парогазовой смеси излучение поверхности фронта пламени мгновенно распространяется по объему защищаемого участка трубы. После того как интенсивность этого излучения достигнет регистрируемой индикатором величины, система индикации срабатывает и подает исполнительный командный электросигнал (за 1—3 мс) на систему впрыска ингибитора (рис. Х-4.). По этому сигналу включается пороховой аккумулятор давления. Под действием давления пороховых газов огнетушащая жидкость, разрушив герметизирующее покрытие на распылительном устройстве, впрыскивается в защищаемый участок трубы в течение 5— 10 мс под постоянным давлением 3,4—40 МПа со скоростью истечения 150—200 м/с. Распространяясь по защищаемому объему аппарата, струи ингибитора распадаются на отдельные капли и, испаряясь и смешиваясь с газовой средой факельной трубы, нейтрализуют взрывоопасную горючую газовую смесь, локализуя тем самым очаг взрыва в зоне его возникновения. [c.223]

    В горелки наливают по 10 мл эталонных и испытуемого топлив и с помощью запала поджигают фитиль. После установления постоянной силы тока по индикатору, соответствующей эталонной яркости пламени, определяют характеристику теплового излучения пламени тетралина, изооктана и испытуемого топлива. [c.127]

    Однако еще лучше пользоваться индикатором окиси углерода, работающим но принципу измерения инфракрасного излучения. Оба автоматических газоанализатора па окись углерода имеют сигнальные устройства, срабатывающие, когда содержание окиси углерода в обратном водороде достигает 1 %. Железный контакт, находящийся в метанизаторе 28, обладает такой большой активностью, что концептрация окиси углерода в обратном водороде никогда не превышает 0,1—0,3%. Содержание окиси углерода в газе на входе в метанизатор 28 равно около 0,5%, а на выходе — около 0,2%. Поскольку со временем в обратном водороде мон<ет накопиться мг[ого метана, часть циркулирующего газа непрерывно выводят из системы, заменяя его свежим водородом. [c.549]

    ЛЮМИНОФОРЫ (лат. lumen — свет и греч. phoros — несущий) —вещества, способные преобразовывать поглощаемую ими энергию в световое излучение. Л. бывают неорганическими и органическими. Свечение неорганических Л. (кристаллофосфоров) обусловлено в большинстве случаев присутствием посторонних катионов, содержащихся в малых количествах (до 0,001%) (напр., свечение сульфида цинка активируется катионами меди). Неорганические Л., применяются в люминесцентных лампах, электронно-лучевых трубках, для изготовления рентгеновских экранов, как индикаторы радиации и др. Органические Л. (люмогены) применяются для изготовления ярких флуоресцентных красок, различных люминесцентных материалов, используются в люминесцентном анализе, в химии, биологии, медицине, геологии и криминалистике. [c.150]

    Если из металла электрода можно изготовить тонкую (не более 20 мкм) и достаточно прочную фольгу или же равномерно напылить металл тонким слоем на подложку, слабо поглощающую радиоактивное излучение (слюда, тефлон, терилен), то оказывается применимым следующий вариант метода радиоактивных индикаторов, предложенный Дж, Бокрисом. Тонкопленочным электродом затянута верхняя часть электрохимической ячейки и свер у к нему примыкает окно счетчика Гейгера, Раствор, содержащий радиоактивное вещество, вначале не касается исследуемого электрода, но его радиоактивность регистрируется счетчиком, так как излучение свободно проходит через газовую фазу над раствором и через тонкопленоч11ый электрод. Чем меньше расстояние I между поверхностью раствора и исследуемым электродом, тем большую радиоактивность фиксирует счетчик. Регистрируя величину радиоактивности в зависимости от I и экстраполируя ее к 1 = 0, находят некоторую величину /о, которая характеризует фоновую радиоактивность, идущую от растворенного вещества, В действительности при контакте раствора с электродом регистрируется радиоактивность /, которая больше, чем /о, из-за адсорбции органического вещества. Следовательно, разность I—Уо характеризует количество адсорбированного вещества. [c.29]

Рис. 139. Схема прибора для определения отношения количества водорода к углероду в органических соединениях i — ноинзационные камеры 2 —источник -излучения Л —индикатор нулевого тока 4— подвижный клин 5--образец, — поглотитель. Рис. 139. <a href="/info/855414">Схема прибора</a> для <a href="/info/54201">определения отношения</a> <a href="/info/63852">количества водорода</a> к углероду в <a href="/info/428">органических соединениях</a> i — ноинзационные камеры 2 —источник -излучения Л —индикатор <a href="/info/427261">нулевого тока</a> 4— подвижный клин 5--образец, — поглотитель.
    Некоторые из радиоактивных изотопов этих элементов используют в качестве индикаторов. Радиоактивное излучение изотопа зв5г (период полураспада 27,7 года), образующегося в результате ядерных взрывов в атмосфере, вызывает лучевую болезнь, саркому костей и лейкоз крови. Накопление его в атмосфере представляет большую опасность для человека, в особенности для детей. В небольших количествах в смеси с радиоактивным изотопом иттрия V он может быть использован в атомных батареях. [c.43]

    При этом совершенно очевидны преимущества работы с монохроматическими излучениями чем более узок интервал длин волн, выделяемый монохроматором, тем легче разграничить области максимального поглощения комплекса с индикатором и самого индикатора, а следовательно, получить большую разность ещ — емтп- Те же преимущества имеет использование монохроматических излучений при безындикаторном титровании, если поглощением обладает не один из компонентов реакции, а два или все три. [c.64]


Смотреть страницы где упоминается термин Индикаторы излучений: [c.104]    [c.381]    [c.474]    [c.379]    [c.49]    [c.208]    [c.243]    [c.26]   
Методы и средства неразрушающего контроля качества (1988) -- [ c.120 , c.176 ]




ПОИСК







© 2025 chem21.info Реклама на сайте