Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды обмен

    Липиды. Обмен липидов в растениях [c.304]

    При избыточном количестве липидов в пище и заболевании диабетом образуются ацетоновые (или кетоновые) тела, т.е. смесь ацетона, ацетоуксусной кислоты и Р Гидроксибутирата. Кетоновые тела могут образоваться также при голодании, когда из жировых депо выделяются жирные кислоты, а обмен углеводов в печени снижен. При накоплении кетоновых тел также уменьшается pH биологических жидкостей и развивается метаболический ацидоз. [c.101]


    Биологическое действие гормонов щитовидной железы распространяется на множество физиологических функций организма. В частности, гормоны регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечнососудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Точкой приложения действия тиреоидных гормонов, как и всех стероидов (см. далее), считается генетический аппарат. Специфические рецепторы—белки —обеспечивают транспорт тиреоидных гормонов в ядро и взаимодействие со структурными генами, в результате чего увеличивается синтез ферментов, регулирующих скорость окислительновосстановительных процессов. Естественно поэтому, что недостаточная функция щитовидной железы (гипофункция) или, наоборот, повышенная секреция гормонов (гиперфункция) вызывает глубокие расстройства физиологического статуса организма. [c.266]

    Методы изучения состава и метаболизма липидов различных тканей//Методы биохимических исследований (липидный и энергетический обмен)/Под ред. М. И Прохоровой Л, 1982 С 54 [c.78]

    Настоящий учебник биологической и медицинской химии и молекулярной биологии широко известен в мире и переведен на многие языки. Авторы 21-го, переработанного издания — ученые из США, Великобритании и Канады. Благодаря энциклопедической полноте и четкости изложения книга может служить справочным пособием. На русском языке учебник выходит в 2-х томах. В первом томе рассматриваются следующие темы структура и функция белков, биоэнергетика, метаболизм углеводов и липидов, обмен белков и аминокислот. [c.4]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]


    Л. играют важную роль в обмене липидов. Их используют для обезжиривания шкур, ароматизации и ускорения созревания сыров, как компонент лек. ср-в. [c.596]

    Известно, что главным источником жирных кислот, используемых в качестве топлива , служит резервный жир, содержащийся в жировой ткани. Принято считать, что триглицериды жировых депо выполняют в обмене липидов такую же роль, как гликоген в печени в обмене углеводов, а высшие жирные кислоты по своей энергетической роли напоминают глюкозу, которая образуется в процессе фосфоролиза гликогена. При [c.370]

    Схема 2 ОБМЕН КАРБОНОВЫХ КИСЛОТИ ЛИПИДОВ [c.313]

    Взаимоотношение между обменом углеводов, липидов и карбоновых к-т, а также азотсодержащих соед. показано на схеме 4. [c.316]

    Оксокислоты ОБМЕН КАРБОНОВЫХ КИСЛОТ И ЛИПИДОВ [c.316]

    Раздел VI ХИМИЯ и ОБМЕН ЛИПИДОВ [c.156]

    ТОКСИНЫ, белки микробного, животного или растит, происхождения, обладающие большой токсичностью (иногда термин Т. распространяют и па ядовитые в-на небелковой природы, в частности иа токсины одноклеточны. ). В отличие от др. токсичных в-в при попадании в организм вызывают образование антител. Мол. масса Т. превышает 4-10 . Оии раств. в воде, не раств. в орг. р-рителях, неустойчивы при нагрев, и действии света. Различаются по типу действия на организм иейротоксины блокируют передачу иервного импульса цитотоксины разрушают биол. мембраны клеток Т.-ингибиторы подавляют активность нек-рых ферментов и нарушают т. о. обмен в-в Т.-ферменты катализируют гидролиз белков, нуклеиновых к-т, липидОв и др. Т. использ, для получ. анатоксинов, лечебных сывороток и др. лек, ср-в. См. также Бактериальные токсины. Яды животных. Яды растений. [c.582]

    Нормальное функционирование клетки, т. е. обмен веществ, рост и размножение может происходить только тогда, когда в ней имеется достаточное количество воды и если клетки погружены в водную среду с растворенными в ней питательными веществами. При отделении клеток от питательной среды, например путем центрифугирования или фильтрования, обмен веществ продолжается до тех пор, пока в межклеточном пространстве имеется вода и в ней растворены питательные вещества. После их использования обмен веществ в клетках продолжается за счет клеточных резервов (углеводы, липиды) в том случае, есл 1 сохраняются оптимальные температура и реакция среды. Когда использованы и резервные вещества, начинается автолиз клеток— саморазрушение, в результате которого белки распадаются на аминокислоты и углерод аминокислот идет для энергетических нужд. [c.24]

    Существенно переработаны в свете новых данных главы, посвященные обмену веществ. Учитывая все возрастающее значение биохимии для медицины, особое внимание уделено регуляции и патологии обмена углеводов, липидов, белков и аминокислот, включая наследственные нарушения обмена. Обстоятельно изложены многие вопросы, которым не всегда уделялось в курсе биологической химии (особенно в учебниках по биологической химии, переведенных с английского языка) должное внимание. Это касается, в частности, особенностей химического состава и процессов метаболизма в норме и патологии таких специализированных тканей, как кровь, печень, почки, нервная, мышечная и соединительная ткани. [c.11]

    ЖИРОВАЯ ТКАНЬ И ЕЕ УЧАСТИЕ В ОБМЕНЕ ЛИПИДОВ [c.370]

    Обмен липидов регулируется ЦНС. Кора большого мозга оказывает трофическое влияние на жировую ткань либо через нижележащие отделы ЦНС—симпатическую и парасимпатическую системы, либо через эндокринные железы. В настоящее время установлен ряд биохимических механизмов, лежащих в основе действия гормонов на липидный обмен. [c.403]

    Токоферолы различаются по числу и положению метильных групп в бензольном цикле. Роль витаминов Е еще не выяснена до конца. Известно, что они благоприятствуют обмену жиров, поддерживают нормальную деятельность нервных волокон в мышцах, облегчают течение сердечно-сосудистых заболеваний. Токоферолы являются природными антиоксидантами. Они легко образуют свободные радикалы (за счет отрыва атома водорода от фенольного гидроксила), которые способны улавливать другие свободные радикалы, возникающие в организме в результате окислительных превращений биологически важных эндогенных субстратов. Например, они препятствуют разрушению кислородом ненасыщенных жирных кислот, приостанавливая дефадацию липидов клеточных мембран. Установлено, что ан-тиокислительные свойства токоферолов резко улучшаются в присутствии витамина С (явление синергизма). Так, их совместное присутствие увеличивает в сто раз сроки хранения свиного жира. [c.112]

    Расщепление фруктозодифосфата (реакция 4) катализируется альдолазой [уравнение (7-64)] в результате образуются глицеральдегид-З-фосфат и диоксиацетонфосфат. Между этими двумя триозофосфата ми в результате действия изомеразы устанавливается равновесие (реакция 5 см. также гл. 7, разд. И, 4). Таким образом, обмен обеих половинок гексозы может пойти по пути превращения в пируват через глицеральдегид-З-фосфат. В то же время для диоксиацетонфосфата существует и другой путь, связанный с восстановлением в глицерофосфат— предшественник липидов н промеж ггочныА продукт в некоторых типах брожения. [c.337]


    АНДРОГЕНЫ, Стероидные горгюны. Образуются в ноло-вы.х желелах и коре надпочечников. Стимулируют ф-цию мужских половых органов и развитие вторичных половых признаков. Влияют также па мн. биохим. процессы, не связанные е характеристикой пола вызывают анаболич. эффект, изменяют обмен уг.тееюдов, липидов, холестерина. [c.47]

    Другое направление исследований в рассматриваемом ряду соединений — это получение веществ, оказывающих влияние на различные системы гомеостаза (функцию коры надпочечников, обмен в организме железа, липидов, холестерина и др.). Среди внедренных в химико-фармацевтическую промышленность СССР за последнее время лекарственных препаратов к этой группе относятся разнообразные медикаменты. Хлодитан (см. с. 67)—воспроизведенный Киевским НИИ эндокринологии и обмена веществ Министерства здравоохранения УССР ингибитор секреции кортикостероидов [107]. История создания препарата связана с изучением токсичности известных инсектицидов ДДТ (II), ДДД (III) и их аналогов. В ходе этих исследований было обнаружено значительное угнетающее действие о,п-изомера ДДД на функцию коры надпочечников, что и послужило основанием для изучения вещества в качестве ингибитора секреции глюкокорти-коидов., [c.49]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]

    Л. б. не разрушают мембраны, не проникают через липидный бислой и осуществляют обмен в мягких условиях, близких к физиологическим. Благодаря этим св-вам они нашли широкое применение при исследовании структуры и ф-ций биол. мембран. Их используют для избирательного введения меченых липидов в наружный и внутренний монослой мембраны, для направленной модификации в ней липидного состава, для изучения трансмембранной миграции липидных молекул и их распределения в мембранах, для выяснения механизмов функционирования мембранных ферментов. [c.598]

    Биосинтез 1/553 5/718. См. также Биополимеры, индивидуальные представители алкалоидов, витаминов, гормонов, липидов и др. ассимиляция 1/553. 1149. 1151 2/633 3/503. 504. 697. 810-812. См. также Анаболизм генетических структур, см. Ген яи-ческая инженерия. Генетический код. Гены и биоазотфиксация 1/103. 104 и бноокислеиие. см. Брожение, Ды-хание. Окислительное фосфорилирование и метаболизм, см. Обмен веществ и синтез бактериальный, см. Биотехнология, Микробиологический синтез. Микроорганизмы [c.560]

    Р улел VI. Химия и обмен липидов 156 [c.285]

    В настоящей книге рассматривается несколько основных типов природных соединений, играющих решающую роль в нормальной жизнедеятельности организмов — белки, углеводы, нуклеотиды и стероиды. Выбор именно этих разделов определился не только их значимостью, но и oт yт твиe i современной общей обзорной литературы по этим вопросам в СССР, а в некоторых случаях (например нуклеотиды) и за рубежом. Белки являются основным субстратом животных организмов, катализаторами важнейших жизненных процессов, а обмен белка лежит в основе всех процессов жизнедеятельности Углеводы — главный энергетический ресурс всех живых организмов и основной субстрат растительных организмов, а в виде своих многочисленных производных углеводы входят в сложные комплексные соединения с белками и липидами, имеющие большое биологическое значение. Исключительная роль нуклеотидов вскрыта исследованиями последних лет, когда удалось показать, что именно они являются тем химическим материалом, который обеспечивает передачу первичного биологического кода, определяющим далее в сложной цепи превращений весь комплекс наследственных признаков. Биологическая роль стероидов весьма разнообразна к этому типу природных соединений относятся важнейшие гормоны, желчные кислоты, холестерин мозговой ткани и т. д. Существенно, что не только биологическая значимость, но и химия рассматриваемых в этой книге соединений весьма разнообразна и может служить яркой иллюстрацией решения многих интереснейших и сложнейших проблем органической химии, в особенности стереохимических вопросов. [c.4]

    Молекулы липидов и белков, входящих в состав мембран, способны перемещаться друг относительно друга. Скорость латеральной диф фузии липидов в бислоях и антигенов (белков) на поверхностях клеток весьма высока. Если предположить, что диффузия фосфолипидав-происходит за счет взаимного обмена соседних молекул, то частота таких обменов может достигать 10 с [24]. [c.348]

    Аминокислоты как основные составные части белков участвуют во всех жизненных процессах наряду с нуклеиновыми кислотами, углеводами и липидами. Кроме аминокислот, входящих в состав белков, живые организмы обладают постоянным резервом свободных аминокислот, содержащихся в тканях и в клеточном соке. Они находятся в динамическом равновесии при многочисленных обменных реакциях. Аминокислоты используются в биосинтезе полипептидов и белков, а также в синтезе фосфатидов, порфи-ринов и нуклеотидов. [c.10]

    I Московском ордена Ленина и ордена Трудового Красного Знамени медицинском институте им. И. М. Сеченова, Военно-медицинской ордена Ленина Краснознаменной академии им. С. М. Кирова и ордена Дружбы Народов Университете дружбы народов им. П. Лумумбы, а также пожелания многих преподавателей, авторы рассматривают структуру и функцию углеводов и липидов совместно с их обменом во второй части учебника — в разделе Обмен веществ . Такой подход можно считать вполне оправданным еще и потому, что студенты лучше усваивают материал при одновременном изучении химии и обмена углеводов и липидов после изучения биоэнергетических аспектов биологического окисления. Последнему вопросу посвящена отдельная глава. [c.10]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]


Библиография для Липиды обмен: [c.474]   
Смотреть страницы где упоминается термин Липиды обмен: [c.315]    [c.2]    [c.159]    [c.330]    [c.45]    [c.133]    [c.628]    [c.247]    [c.604]    [c.293]    [c.310]    [c.311]    [c.315]    [c.109]    [c.20]   
Биохимия (2004) -- [ c.326 ]

Основы биохимии (1999) -- [ c.387 , c.395 , c.399 , c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие между обменом глюкозы и липидным обменом липиды как аэробный источник энергии

Внутриклеточный обмен липидов

Глава ч е т в f тая. Обмен липидов (жиров и липоидов)

Глюкоза обмен, взаимодействие с обменом липидов

Исследование обмена углеводов и липидов

Клещевина, липиды, обмен в семенах

ЛИПИДЫ РАСТЕНИЙ И ИХ ОБМЕН

Лабораторное занятие 17. Обмен липидов. Переваривание, транспорт, окисление жирных кислот

Липиды

Липиды и их обмен Обнаружение жиров

Липиды крови.— Запасные жиры.— Синтез тканевых липидов.— Окисление жирных кислот.— Образование кетоновых тел.— Обмен фосфолипидов (фосфатидов). Обмен стеринов.—Взаимосвязь углеводного и жирового обменов Белковый обмен

Липиды. Обмен липидов в растениях

Нарушение обмена липидов

ОБМЕН И ФУНКЦИИ ЛИПИДОВ. АЕ. Губарева, С.А Силаева, Е.В. Осипов

ОБМЕН ЛИПИДОВ Переваривание и всасывание липидов пищи

Обмен липидов Переваривание липидов Эмульгирование жиров

Обмен липидов Химия и распространение

Обмен липидов жиров и липоидов

Переваривание и всасывание липиЖировая ткань и ее участие в обмене липидов

Печень обмен липидов

Регуляция обмена липидов

Роль печени в обмене липидов



© 2024 chem21.info Реклама на сайте