Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропен хлорирование

    Относительные скорости замещения различных типов водородных атомов, найденные главным образом на примерах хлорирования пропана, н-бутанов и изобутана, позволяют рассчитать содержание в смеси каждого из изомеров. При хлорировании н-пентана получаются три, прп хлорировании изопентана — четыре изомера. Изопентан (2-метилбутан) имеет всего 12 атомов водорода, из которых 9 связано с первичным углеродом, 2 со вторичным и 1 с третичным. [c.548]


Рис. 33. Аппаратура для хлорирования пропана и изобутана и их низших продуктов хлорирования. Рис. 33. Аппаратура для <a href="/info/107968">хлорирования пропана</a> и изобутана и их низших продуктов хлорирования.
    Схема процесса показана на рис. 32, а. Пропан и хлор через расходомеры 32 поступают в нагреватели 2и 3, помещенные в обогреваемую баню, в которой в зависимости от требуемой температуры нагрева в качестве теплоносителя применена вода или расплавленные соли. Хлор и пропан поступают в трубопровод в жидком состоянии, поэтому количество их может измеряться жидкостными расходомерами. Если необходимо, пропан можно разбавлять соответствующими разбавителями, например азотом или углекислотой, для отвода части выделяющегося тепла, чтобы предотвратить чрезмерно бурное протекание реакции. При хлорировании хлористого пропана в качестве исходного материала азот можно предварительно нагревать, так как в этом случае он играет роль теплоносителя, подводящего тепло, необходимое для испарения и нагрева хлористого алкила. [c.161]

    Рассмотренный метод позволяет гладко проводить газофазное хлорирование метана, пропана, бутанов, пентанов, гексанов, а также бензола. [c.171]

    При газофазном хлорировании пропана, н-бутана и изобутана или н-пентана и изопентана изомерные монохлорпроизводные образуются в определенном количественном соотношении, которое определяется относительными скоростями хлорирования водородных атомов различного типа. [c.198]

    При хлорировании пропана применяют полихлорпропан, содержащий около 6 атомов хлора в молекуле и имеющий удельный вес 1,7. Через этот растворитель пропускают при освещении актиничными лучами пропан и хлор в молярном соотношении 1 2. [c.191]

    Результаты горячего хлорирования пропена па полупромышленной установке можно видеть из приводимых цифр [2]. [c.170]

    При хлорировании пропана до моно- и дихлоридов образуются следующие продукты  [c.164]

    Разработаны специальные процессы высокотемпературного хлорирования метана [56], пропана, н-бутана и изобутана [57] и особенно-пентанов, хлорированию которых для последующего получения хлористых амилов — исходных продуктов для многочисленных рассмотренных ниже синтезов — посвящено много работ [58]. [c.159]

    Продукты хлорирования пропана еще не имеют важного промышленного значения. Сравнительно недавно был детально изучен гидролиз хлористого изопропила [187]. В США 1,3-дихлорпропан, получаемый с выходом около 20% прямым термическим хлорированием пропана и имеющий максимальную температуру кипения из всех дихлорзамещен- [c.214]


    Этот способ имеет еще то достоинство, что благодаря непрерывному кипящему движению взвешенного контакта достигается быстрее внутреннее смешение газов и более действительный и полный теплообмен между поступающим свежим газом и реакционным. Способ полностью оправдал себя, особенно для хлорирования этана, пропана и др. Дальнейшая переработка продуктов хлорирования после освобождения от хлористого водорода промывкой водой и щелочью производится перегонкой под давлением. [c.115]

    В табл. 76 даны физические константы составных частей фракции монохлоридов, получающихся при горячем хлорировании пропена. [c.170]

    Есть еще одна возможность приблизить отношение скоростей замещения первичного и вторичного атомов водорода к единице. Она заключается в проведении газофазного хлорирования под давлением, так как повышение последнего благоприятствует замещению водорода метильных групп. В то время как при 300° и нормальном давлении скорости замещения хлором первичного и вторичного атомов водорода пропана относятся как 1 3,25, повышение давления до 70 ат увеличивает это отношение до 1 2,6 [41]. При 240° и нормальном давлении указанные скорости замещения относятся как 1 3,6 если давление повысить до 240 ат, отношение скоростей увеличивается до 1 2,65. Такое повышение давления увеличивает содержание первичного хлорида в продуктах реакции от 45 до 54%. Аналогичный результат получается, если при нормальном давлении температуру повысить от 240 до 475°. [c.547]

    В случае пропана и н-бутана мононитрозамещенные образуются практически в таком же отношении, в каком и изомерные хлорпроиэ-водные при хлорировании этих парафинов. Процессы нитрования изобутана и пентанов протекают запутаннее, так как относительно высокие температуры способствуют появлению побочных реакций. В результате хотя и образуются все теоретически возможные изомеры нитропарафинов, но не Б тех соотношениях, как при галоидировании. [c.561]

    Е. Термическое хлорирование пропана [c.176]

    Дальнейшее хлорирование уже хлорированного пропана протекает легче, чем хлорирование исходного углеводорода при этом удельный вес реакционной смеси практически не изменяется. [c.191]

    Из приведенных выше результатов опытов по хлорированию пропана и бутанов можно подсчитать, что в газовой фазе при 300° замещение атомов водорода всегда происходит в следующих отношениях первичный вторичный третичный как 1 3,25 4,43. [c.545]

    Из числа относящихся сюда углеводородов — метан,а, этана, пропана, н-бутана и изобутана — метан в описанных здесь условиях практически не реагирует. Это, несомненно, объясняется отчасти малой растворимостью метана в четыреххлористом углероде, отчасти же тем, что метан является из них наиболее инертным по отнощению к реакциям замещения, ка к это видно также лри нитровании и хлорировании. Не дали положительных результатов также попытки повысить растворимость метана в четыреххлористом углероде снижением температуры до —5° с тем, чтобы таким путем обеспечить увеличение выходов при сульфохлорировании. [c.394]

    Они нашли, что при термическом хлорировании пропана в газовой фазе при 300° получаются оба теоретически возможных хлористых пропила в приблизительном молярном отношении 1 1 в тех же условиях при хлорировании н-бутана образуются оба хлористых бутила, [c.542]

    При сульфохлорировании пропана и н-бутана в растворе четыреххлористого углерода образуется смесь изомерных моносульфохлоридов, соотношение которых в противоположность хлорированию и нитрованию уже нельзя определить ректификацией. Температуры кипения изомеров отличаются друг от друга относительно мало, а высокие флег-мовые числа при перегонке использовать нельзя вследствие способности этих соединений к легкому разложению. Ниже приведены температуры кипения (при 15 мм рт. ст.) чистых изомеров моносульфохлоридов пропана и н-бутана (в ° С)  [c.575]

    Не меньшее значение имеют реакции хлорирования олефинов замещением. С олефиповымп углеводородами изостроения, у которых углерод с двойной связью находится в боковой цепи, реакция хлорирования путем замещения идет уже при комнатной и даже при значительно более низкой температуре. Хлорирование неразветвленных углеводородов, в частности пропена, для которого эта реакция играет большую роль, идет только при очень высоких температурах (горячее хлорироваппе при 500 ). [c.168]

    Синтез глицерина без применения хлора [9]. Новый метод синтеза глицерина из нропена без применения хлора разработан фирмой Шелл Кемикал Корнорейшн. Для синтеза глицерина хлорированием пропена и хлоргидринированием спиртов необходимы очень большие [c.178]

    В пересчете на дихлорпропан образование 1,3-изомера составляет лищь около 20%. Ниже приводятся данные о температурах кипения отдельных продуктов, образующихся при хлорировании пропана для получения дихлорзамещенных производных. [c.176]


    С течением времени реакционная трубка покрывается тонкой пленкой хлористого свинца. Состав продуктов хлорирования (соотношение MOHO-, ди- и полихлоридов, а также соотношение изомерных моиохло-р идов, например, для пропана и бутана) совпадает с nojjy4aeMbiM при хлорировании без добавки катализатора, но при более высоких температурах. [c.152]

    Этот процесс подробно рассмотрен ниже на примере хлорирования пропана для получения моно- и дихлорпропапа. В последующем было детально изучено [61] термическое и фото химическое хлорирование этана соответственно при 440° и около 150° по Хэссу — Мак-Би. [c.161]

    Разработанный Хэссом и Мак-Би процесс хлорирования пропана, -бутана и изобутана был в последующем усовершенствован, что позволило с успехом использовать его и для хлорирования метана. При. этом [c.164]

    В настоящее время термическое хлорирование пропана проводят главным образом для получения 1,3-дихлорпропана, являющегося исходным полупродуктом для синтеза циклопропана (см. стр. 214). [c.176]

    Установлено, что если не стремятся специально получить насыщенные продукты, то хлорирование парафиновых углеводородов, как и их хлоролиз, целесообразно проводить под повышенным давлением. Хлоролизом высокохлорированного пропана при нормальном давлении возможно получать с хорошими выходами четыреххлористый углерод и тетрахлорэтилен, которые являются ценными растворителями. Равным о бразом хлоролизом высокохлорированных пе нтана и гексана можно получать с высоким выходом весьма важный в настоящее время гексахлорциклопентадиен — продукт для синтеза чрезвычайно активного инсектисида хлордана. Тем л<е способом—хлоролизом полихлор-бутана при нормальном давлении — молено также получать гексахлорбутадиен с выходом не менее 75% [101]. [c.191]

    Источником триметиленгликоля для этой реакции служила мыловаренная промышленность, где он образуется в небольших количествах как побочный продукт производства глицерина. В настоящее время в качестве исходного продукта для производства циклопропана применяют 1,3-дихлорпропан (триметиленхлорид), получаемый прямым хлорированием пропана (см. стр. 176). [c.215]

    Полихлорпроизводные пропана, бутана, пентана и гексана можно, получать непрерывным методом фотохимического хлорирования в жидкофазной системе, пропусканием газообразных или введением жидких углеводородов в жидкий инертный растворитель при высоком отношении хлор углеводород. В качестве растворителя для этого целесообразно применять соответствующий полихлоралкан, получаемый хлорированием незамещенного углеводорода. [c.191]

    Так, например, нрн газофазном хлорировании пропана при 300° изомерные хлористые пропилы (1-хлорпропан и 2-хлорпропан) обра- [c.198]

    Следов ательно, из парафиновых углеводородов с 12—18 углеродными атомами, важных с точки зрения пронзводства поверхностно-активных веществ, в среднем образуется не более — 20% первичного, т. е. замещенного при концевом атоме хлорида. Таким образом, обнаруживается- весьма важное для последующего рассмотрения вопроса обстоятельство, что при хлорировании высокомолекулярных парафиновых углеводородов образуются в преобладающей степени вторичные хлориды. В то время как- при газофазном хлорировании пропана при 300° еще образуется около 50% хлорида, содержащего хлор при концевом атоме углерода, для триаконтана (СзоНб2) при хлорировании в жидкой фазе, и отношении скоростей замещения первичного и вторичного водородов, равном 1 3,25, образование хлорированного при концевом атоме производного составляет лишь 3% (см. главу Закономерности реакций замещения парафиновых углеводородов , табл. 143, стр. 555). [c.200]

    Как подробнее изложено в главе Закономерности при реакциях замещения парафиновых углеводородов , при сульфохлорировании пропана оба теоретически возможных пропанмоносульфохлорида, а именно пропан-1- и пропан-2-сульфохлорид, получаются в соотношении 1 1, в то время как при сульфохлорировании н-бутана бутан-1-и бутан-2-сульфохлорид образуются в соотношении 33 67. Следовательно, имеются такие же закономерности замещения, ак и при хлорировании. [c.380]

    Изучение литературы, посвященной галоидированию углеводородов, начиная с пропана, у которого могут появиться два изомерных продукта монозамещения, показывает значительные отклонения от состояния современных знаний. Еще в 1869 г. Шорлеммер оспаривал образование хлористого пропила при прямом хлорировании пропана [5], так как получил при взаимодействии продукта реакции (моно-хлорпропана) с ацетатом натрия и ледяной уксусной кислотой при 200 лишь н-пропилацетат, который омылил в н-пропиловый спирт. Последний был идентифицирован окислением в пропионовую кислоту. [c.533]

    В последнее время Хэсс и его сотрудники исследовали хлорирование пропана, н- и изобутана, а также н- и изопеитаиа в жидкой фазе (в растворе четыреххлористого углерода) при 30° и в газовой фазе при 300° и выше [32], В своих опытах они исходили из того, что никаких изменений в строении углеродной цепи не происходит, если при термическом хлорировании углеводородов удается избежать пиролиза. Поэтому эти, а также другие источники ошибок были тщательно устранены. [c.542]

    Изучение термического газофазного хлорирования лри различных температурах привело к результатам, показывающим, что в этом случае отношение скоростей замещения первичного и вторичного атомов водорода гораздо больше зависит от температуры, чем при газофазном хлорировании пропана или н-бутана. Процентное отношение, при котором образовались оба типичных продукта хлорирования (первичный хлорид и смесь изомерных вторичных хлоридов), устанавливали следующим образом. Продукты реакции разделяли ректификацией на низко- и высококипящую фракции. Высококипящую фракцию считали за первичный хлорид, ниэкокипящую—эа смесь вторичных хлоридов их константы соответствовали описанным в литературе. [c.556]

    Уже из приведенного выше материала видно, что газофазное нитрование протекает более сложно, чем нитрование в жидкой фазе или хлорирование в газовой и в жидкой фазах. Расшифровку результатов газофазного нитрования особенно затрудняют деструктивные процессы, приводящие к образованию низших нигропарафинов. Поэтому факторы, влияющие на образование нитропарафинов при газофазном нитровании углеводородов, особенно пропана, были в последнее время изучены повторно состав продуктов реакции определяли не ректификацией, а гораздо более быстрым масс-спектроскопическим методом [90]. [c.570]

    Приняв, как это мы уже раньше сделали, что нитрометан и нитроэтан образуются при распаде изопропильных и соответственно -пропильных радикалов, можно подсчитать относительные реакционные способности положений 1 и 2 в пропане при помощи отношения суммы 1-1штропропана и нитроэтана к сумме 2-нитропропана и нитрометана. В отсутствие катализаторов это отношение при 423° равно 54 46. В случае хлорирования пропана распределение изомеров при этой температуре почти такое же (см. стр. 546), [c.572]

    Аналогичное положение отмечается также в случае газофазногс нитрования пропана и н-бутана при 400°, когда изомеры еще можно разделить ректификацией. При этом количества образующихся изомеров таковы, что отношение скорости замещения первичного атома водорода ко вторичному, как и для хлорирования, равны 1 3,25. [c.573]

    Можно осуществлять также хлорирование пропана или 1-хлор-иропана при 500—700 °С в присутствии катализатора [28]. Наконец, при горячем хлорировании пропилепа можно использовать вместо lo смесь НС1 и 0.2 или воздуха (катализатор Li l, благородные металлы или соединения теллура на пемзе) [29]. [c.182]

    Высокотемпературное (450—700 °С) хлорирование низкомолекулярных алифатических углеводородов, главным образом метана, этана, пропана, бутана, изобутана, этилена и пропилена, а также их хлорпроизводиых, проходит уже не как чистая реакция замещения, а большей частью как расщепляющий и строящий крекинг. В случае метана преобладает соединение обломков j с образованием иерхлорэтилена, в случае пропанов и пропиленов — расщепление с образованием четыреххлористого углерода и иерхлорэтилена, в случае этапов и этиленов в зависимости от условий реакции могут получаться различные продукты [183—186]. [c.201]


Смотреть страницы где упоминается термин Пропен хлорирование: [c.281]    [c.170]    [c.176]    [c.214]    [c.215]    [c.590]    [c.592]   
Органическая химия (1990) -- [ c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Пропей

Пропей хлорирование

Пропен

Пропилен Пропей хлорирование

Пропилен Пропен хлорирование



© 2025 chem21.info Реклама на сайте