Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбиды мелкозернистые

    Склонность стали к сероводородному растрескиванию зависит от прочностных свойств ее, которые меняются в широком диапазоне при термической обработке, пластической деформации или их сочетании. Термическую обработку большинство исследователей рекомендует проводить таким образом, чтобы структура стали была мелкозернистой и содержала в основном сорбит, а карбиды присутствовали в минимальном количестве, были мелкими глобулярными, равномерно распределенными. [c.28]


    В работе [5] показано, что укрупнение зерна в стали приводит к увеличению склонности ее к сульфидному растрескиванию. Менее подвержена сульфидному растрескиванию сталь с относительно мелкозернистыми сферическими карбидами, равномерно распределенными в феррите, и больше — сталь со структурой, содержащей грубые глобулярные карбиды или ламели карбида. В соответствии с этими представлениями нормализация, которой подвергаются при изготовлении насосно-компрессорные трубы, не является оптимальной термообработкой. [c.133]

    Продукты реакций всплывают на поверхность металла и удаляются в виде шлака. Удаление газов упрочняет структуру стали. Ванадий также взаимодействует с растворенным в стали углеродом, образуя твердые и жаропрочные карбиды. Карбиды, распределяясь в железе, препятствуют образованию крупных кристаллов сталь получается мелкозернистой, твердой и ковкой с повышенной упругостью. [c.509]

    Природный графит с давних пор использовали для технических целей. Однако в современной технике большее значение приобрел искусственный графит, который отличается от природного чистотой и однородностью. Его получают сильным накаливанием в электропечах смеси мелкозернистого кокса или угля со смолой и с небольшим количеством кремнезема (двуокиси кремния). При этом происходит развитие кристаллов графита, имевшихся в зародышевом состоянии в аморфном угле (или коксе). Кремний же, восстанавливающийся углеродом из двуокиси, играет роль своеобразного катализатора, образуя с углем карбид кремния, который в свою очередь, разлагается на кремний и графит. Графит выкристаллизовывается также при охлаждении растворов углерода в некоторых металлах, например железе. [c.193]

    Карбиды вольфрама, титана, тантала служат основой для выработки сверхтвердых и тугоплавких сплавов путем спрессовывания мелкоизмельченных компонентов при нагревании (при этом роль связывающего материала обычно играют кобальт или никель). Такой метод получения мелкозернистых сплавов является основой порошковой металлургии. [c.369]

    Минимальные потери массы при изнашивании после отпуска отмечены у образцов стали, содержащей 1,40 /о С, 7,05% Сг и 0,70% Т1 (плавка № 311). В литом состоянии сталь имеет структуру мелкозернистого аустенита и включает небольшое количество эвтектики. Карбидная фаза состоит из карбида титана, а также из гексагонального и кубического карбидов, связанных в основном в двойных эвтектиках. С увеличением содержания гексагонального карбида для сталей такого типа во всех случаях отмечено снижение сопротивления изнашиванию. [c.108]


    Молибден в стали входит в состав как свободных выделений карбидов, так и твердого раствора. Присадка его в сталь способствует созданию мелкозернистой структуры. Вследствие этих причин и повышается прочность стали на холоду, при повышенной температуре, кратковременной и длительной нагрузке. Молибден повышает способность стали к цементации. В магнитных сталях и сплавах он увеличивает магнитную проницаемость. Придает жаропрочность и жаростойкость ряду сплавов на основе цветных металлов. [c.183]

    Почти все свойства стали существенно меняются под влиянием тех или других легирующих компонентов. Они раскисляют сталь и удаляют из нее вредные примеси, образуют твердые растворы или простые и сложные карбиды, способствуют распаду или образованию аустенита, придают стали крупно- или мелкозернистую структуру, увеличивают прокаливаемость, влияют на возникновение отпускной и тепловой хрупкости и иа предел ползучести и жаростойкость стали, В конечном счете механические свойства и коррозионная стойкость стали определяются, в основном, ее химическим составом и термической обработкой. [c.345]

    ДОВОДОЧНАЯ ПАСТА - паста, состоящая из смеси мелкозернистых абразивных порошков и поверхност-но-активных веществ. Применяется для отделочной (доводочной) обработки с целью получения у изделий чистой (10—14-го классов) поверхности и точных размеров (1—2-го классов). В качестве абразивных используются порошки карбидов кремния и бора, окислов алюминия и хрома, натуральных и синтетических алмазов, боразона и металлоподобных тугоплавких соединений (карбидов и боридов титана, циркония, вольфрама, молибдена, хрома). Поверхностноактивными веществами служат стеариновые и олеиновые кислоты, парафин, минер, масла, полиизобутилен, [c.400]

    Исследовали формирование структуры мелкозернистого материала на основе непрокаленного кокса при введении 16% (объемн.) титана, карбида титана или карбида титана, воостановлениого из рутила. Определяли величину и скорость усадки в различных интервалах температур и потери массы. [c.263]

    Из материалов типа углеродокерамики наши заводы в этот период не удовлетворяли полностью потребности только в мелкозернистых и прочных фафитахтипа МГ-1 больших габаритов и в высокопрочных фафитах типа МПГ-7 — как для формования пластин из карбида бора для бронежилетов, так и для электронной техники. [c.241]

    Абразивные материалы. Для изготовления абразивов на подложках [1, 3] применяют стекло (битое или тонкоизмельчеиное), мелкозернистый песчаник, наждак (корунд в смеси с оксидом железа), гранат, оксид алюминия и карбид кремния. Соотношение этих компонентов зависит от типа и зернистости абразивного порошка и от того, насколько плотно порошок рассеян по подложке, [c.235]

    В той или иной мере указанные условия реализованы на практике при создании мелкозернистых высокопрочных графитов на основе непрокаленного кокса типа МПГ-6 и ЭЭГ. При этом у таких графитов в отличие от полученных на основе прокаленного кокса по классической электродной технологии (АРВ, АРВу и др.) адгезия наполнителя через прослойку карбонизованного связующего частично (МПГ-6) или полностью (ЭЭГ) заменена на автогезию. Дальнейшее увеличение прочности межзеренных границ графита достигается применением термомеханической обработки углеродной шихты с добавками в качестве связующего карбидообразующих элементов - циркония, кремния и др. Процессы взаимодействия легирующих элементов, их карбидов и образующихся при высоких температурах жидких карбид-графитовых эвтектик с твердым углеродом и газовой фазой приводит к увеличению пластичности, прочности, плотности и к совершенствованию кристаллической структуры (рекристаллизованный графит) [42]. Табл. 10 иллюстрирует изложенные выше принципы достижения высокой прочности на примере ряда промышленных марок углеродных материалов. [c.63]

    При содержании 1,88% Сг и 0,15% 2г (плавка № 309) структура стали чревычайно мелкозернистая и состоит в основном из мартенсита с трооститом в отдельных местах по границам зерен имеется очень тонкая карбидная сетка и отдельные включения карбида циркония мелкого и среднего размера. [c.110]

    Справедливость второго предположения (о том, что воздушная среда может усиливать скольжение по границам зерен) гюдтвер-ждается сравнительным исследованием ползучести суперсплава на никелевой основе, упрочненного за счет высокого объемного содержания фазы у на воздухе и в вакууме при 760 °С [172]. Размеры зерна и образца изменялись в этом случае независимым образом, В исследованной системе, где границы зерен практически не содержали упрочняющих карбидов, наблюдалось усиление ползучести на воздухе. Как и следовало ожидать, образцы с более крупным зерном (275 мкм) оказались более стойкими к ползучести на воздухе, чем мелкозернистые (100 мкм) образцы. Напротив, при испытаниях в вакууме скорость ползучести практическп не зависела от размера зерна. Это согласуется с представлением об усилении скольжения по границам зерен, вызванном проникновением воздуха. Последнее подтверждается также наблюдениями сдвига границ зерен, согласно которым вклад проскальзывания по границам зерен в полную величину деформации иа воздухе больше, чем в вакууме. Интересно, что для образцов того же сплава, состаренных с целью образования выделений карбидов по границам зерен, усиление ползучести на воздухе уже не наблюдалось напротив, на воздухе сплав упрочняется. Эти результаты можно объяснить, основываясь на представлении об упрочняющем влиянии поверхностной окалины, которое должно быть эффективным, [c.39]


    Пороговое напряжение при коррозионном растрескивании закаленной и отпущенной на сорбит стали с 0,35 % С выше, чем нормализованной и отпущенной с 0,13 % С (продукты отпуска бейнита) при одинаковой прочности обеих сталей [200]. С повышением температуры и выдержки в процессе высокого отпуска закаленной стали, структура сорбита разупрочняется, полигонизуется, снимаются внутренние напряжения, карбиды укрупняются и преобретают сферическую форму, при этом отмечено одновременное повышение сопротивления хрупкому разрушению и водородному охрупчиванию - каждые 10 градусов отпуска снижают температуру вязкохрупкого перехода Т50 на 7-10 С и повышают сопротивление растрескиванию на 20 ч [200]. Для конструкционной стали Сг-Мо-У (0,09-0,19 % С 2,5 % Сг 1,0 % Мо 0,25 % V) минимальная склонность к растрескиванию наблюдалась после высокого отпуска, формирующего структуру мелкозернистых глобулярных карбидов. Закалка с высоким отпуском сопровождается переходом углеродистых и низколегированных сталей от закаленного состояния к улучшеному и уменьшением величины зерна, это снижает охрупчивание сталей, с повышением количества пластинчатого перлита охрупчивание сталей возрастает [228]. [c.480]

    Изготовление изделий методом холодной штамповки требует повышенной пластичности стали, которая обеспечивается при наличии в готовой ленте однородной мелкозернистой структуры ферритной матрицы с включениями дисперсных карбидов r,3Q. Такая структура получается после отжига при 850 °С рис. 1.011). Сталь 12X17 не склонна к интенсивному росту зерна при высокотемпературном нагреве (например, при сварке) из-за наличия двухфазной (у + б) структуры. Заметное упрочнение и полное охрупчивание (рис. 1.8) обусловлены образованием мартенсита при охлаждении. Повторный отжиг при 700—850 °С восстанавливает прочность и относительное удлинение и обеспечивает максимальную стойкость сварных соединений в HNO (происходит выравнивание концентрации хрома в приграничных зонах), в то время как более низкие температуры (450—600 °С) отпуска увеличивают скорость коррозии (рис. 1.9). [c.17]

    Химический состав и физико-механические свойства МКТС приведены в табл. 36. Уменьшение содержания кобальта в сплавах приводит к снижению ударной вязкости, прочности при изгибе, модуля упругости, что препятствует применению МКТС марок ВК2, ВКЗ для тяжелонагруженных деталей в условиях вибрационных и ударных нагрузок, способствующих трещинообразованию и выкрашиванию. Увеличение содержания карбидов, особенно мелкозернистой карбидной фазы до 1 мкм, обеспечивает более высокую износостойкость МКТС. Для изготовления износостойких деталей в химическом машиностроении применяют в основном I группу твердых сплавов, имеющих наиболее ценный комплекс физико-механических, антифрикционных и коррозионных свойств. [c.68]

    Ванадий даже в небольщих количествах сильно влияет на свойства сталей. В сталях аустенитного класса ванадий стабилизирует аустенит при высоких температурах и низком содержании углерода. Образуя карбиды, ванадий способствует измельчению структуры стали, что приводит к увеличению ее прочности, вязкости, пластичности и износоустойчивости. При 0,03—0,05% V снижается склонность кипящей стали к старению, обусловленному повышенным содержанием азота, и улучшается поверхность стального слитка. При 0,01—0,04% V существенно улучшаются свойства закаленной и вы-сокоотпущенной стали. Ванадий, присутствующий в чугуне в количестве 0,1—0,2%, предотвращает графитизацию, препятствует выделению свободного графита и феррита, стабилизирует цементит и значительно увеличивает глубину отбела чугуна. При этом повышается ударная вязкость чугуна. Добавка 0,2% V в чугун для отливок прокатных валков приводит к получению твердой поверхности, глубина отбела увеличивается, а сердцевина валка получается мелкозернистой и более вязкой. Ванадий является сильным упрочнителем чугуна. Чистый ванадий представляет собой мелкокристаллический металл серебристо-серого цвета. При температуре 293 К практически не окисляется. Свойства ванадия приведены ниже  [c.195]

    Осн. особенности влияния ванадия на св-ва стали обусловлены процессами карбидо- и нитридообразова ния. Ванадий, являясь сильным карбидообразующим элементом, образует с углеродом стали карбид ванадия, с азотом — карбонитрид ванадия или его нитрид. Все три фазы имеют однотипную гранецентрированную кубическую решетку типа Na l. Образование дисперсных карбидов (нитридов) ванадия вызывает дисперсионное твердение (упрочнение) сталей. Кроме того, легирование стали ванадием способствует получению мелкозернистой структуры сж. Структура металла), уменьшению склонности к перегреву (см. [c.173]

    Примечания 1. Цифры после буквы К — содержание кобальта в сплаве, цифры после буквы Т — содержание карбида титана или суммарное содержание карбида титана и тантала (в титанотанталовольфрамовых сплавах), остальное — карбид вольфрама. 2. Буквы после цифр — зернистость карбидной составляющей М — мелкозернистая (размер зерен 1—2 мкм), ОМ — осоиомелкозернисгая (до 1 мк.т), В, ВК и КС — крупнозернистая (2—5 мкм) о различными свойствами исходного карбида вольфрама. [c.506]

    С, обеспечивающим кристаллизацию по стабильной системе с выделением всего углерода в свободном состоянии. В образовавшемся фер-ритном ковком чугуне нот связанного углерода, в его металлической основе практически нет также перлита и структурно-свободных карбидов. Ускоренная Ф. (10—15 ч) обеспечивается предварительной закалкой отливок белого чугуна, создающей мелкозернистую структуру п внутренние напряжения, т. е. многочисленные центры кристаллизации графита. Ф. повышает пластичность и ударную вязкость, улучшает люгн. св-ва и обрабатываемость отливок. Под Ф, понимают также реакцию образования ферримагнитных материалов (ферритов) из окислов, грщроокисеп и др. соединений. [c.638]

    Исследования стали 15X28 показали, что ее эрозионная стойкость снижается с увеличением размера ферритного зерна (рис. 114). При этом уменьшается и твердость стали. Очевидно, в пределах одной структуры твердость может характеризовать эрозионную стойкость стали, так как с увеличением твердости стали возрастает ее сопротивление микроударному разрушению. Измельчение ферритной структуры хромистых сталей приводит к упрочнению границ зерен. В этом случае возрастает дисперсность карбидных выделений и их роль в упрочнении границ зерен увеличивается. Поэтому при наличии в стали мелкозернистой структуры феррит разрушается не только по границам, но и внутри зерен. Ферритные стали разрушаются при испытании сравнительно равномерно, без образования больших раковин, что свидетельствует о наличии однофазной структуры. Процесс гидроэрозии протекает быстро вследствие недостаточной упрочняе-мости хромистого феррита в процессе микроударного воздействия. Образцы стали Х28 при испытаниях подверглись значительному изнашиванию, так как структура этой стали отличалась крупнозернистым строением и наличием сфероидизированных карбидов хрома. [c.199]

    Наряду со спеканием компактный вольфрам высокой плотности получают также методами осаждения из газовой фазы, электрохимическим и плазменным осаждением, дуговой, в том числе гарннссажной, и электронно-лучевой плавками, выращиванием монокристаллов в специальных кристаллизационных аппаратах с использованием электронного и плазменного нагревов (электронно-лучевая зонная плавка, плазменно-дуговая плавка). Плавка вольфрама в дуговых и электронио-лучевых печах обеспечивает эффективную очистку от примесей и получение крупных заготовок массой до 3000 кг, предназначенных для изготовления листов, профилей, труб и других изделий методами фасонного литья, прессования, прокатки. Для измельчения зерна с целью повышения технологической пластичности применяют модификаторы и раскислителя (например, карбиды циркония, ниобия и т. д.), а также гарниссажную плавку с разливкой металла в изложницу. Для снижения содержания примесей и одновременно создания более мелкозернистой структуры используют дуплекс-процесс электронно-лучевая плавка+электродуговая плавка Наиболее глубокая очистка от примесей реализуется при выращивании монокристаллов вольфрама. При этом у вольфрама появляются особые свойства, присущие только монокристаллическому состоянию, в частности анизотропия свойств, более высокая по сравнению с поликристаллами эрозионная стойкость, высокая устойчивость к расплавам и парам щелочных металлов, к термоциклированию, облучению, лучшая совместимость со многими неорганическими, в том числе металлическими, материалами и т. д. [c.398]

    Ванадий. Присадка ванадия повышает механические качества стали. В небольших количествах (0,2—0,5%) ванадий сообщает сталям мелкозернистость, прочность я вязкость. Твердость высокоуглеродистохз ванадиевой стали связана с наличием в ней карбидов состава У4Сд, УС и др. Ванадиевую сталь применяют главным образом для изготовления деталей, работающих с резко переменной нагрузкой (оси, пружины, инструменты и т. п.). [c.393]


Смотреть страницы где упоминается термин Карбиды мелкозернистые: [c.167]    [c.353]    [c.101]    [c.164]    [c.114]    [c.130]    [c.130]    [c.591]    [c.483]    [c.130]    [c.148]    [c.173]    [c.203]    [c.212]    [c.247]    [c.338]    [c.476]    [c.89]    [c.130]    [c.272]    [c.507]    [c.593]   
Структура коррозия металлов и сплавов (1989) -- [ c.251 ]




ПОИСК







© 2025 chem21.info Реклама на сайте