Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие полинуклеотидные спирали

    Двойная спираль обычной ДНК состоит из двух взаимно перевитых полинуклеотидных цепей, азотистые основания которых попарно соединены водородными связями. Аденин (А) одной цепи связан с тимином (Т) другой, а гуанин (Г) с цитозином (Ц). Схемы этих пар (уотсон-криковские пары) показаны на рис. 8.5. Таким образом, две цепи ДНК взаимно комплементарны, т.е. имеется однозначное соответствие. между их нуклеотидами. Это соответствие раскрывает смысл правил Чаргаффа (см. стр. 89). [c.492]


    Другой тип кооперативности в молекуле белка обнаруживается при обратимом конформационном переходе между а-спиралью и беспорядочным клубком. Если создать условия, при которых более устойчивой является спиральная конформация, то все молекулы, которые находятся в состоянии беспорядочного клубка, быстро примут форму спирали. Аналогичным образом в условиях, при которых более устойчивой конформацией является беспорядочный клубок, все спирали расплетутся и произойдет полное их превращение в клубки. Плавление ДНК (гл. 2, разд. 10), как и любого кристалла, происходит кооперативно [21]. Формирование новой полинуклеотидной цепи на комплементарной матрице, приводящее к возникновению стэкинг-взаимодействий, также может быть кооперативным процессом. Так, например, формирование цепи полиадениловой кислоты на двух цепях полиуридиловой кислоты приводит к кооперативному образованию комплекса, представляющего собой тройную спираль (гл. 2, разд. Г.6). Наличие стэкинг-взаимодействия делает рост спирали энергетически более выгодным, чем инициацию новых спиральных участков [22]. Проблеме кооперативности посвящена обширная литература, в частности работы [23—25]. [c.263]

    Двойная спираль ДНК (разд. 25.6) образуется как бы в результате закручивания двух полинуклеотидных цепей друг около друга по винтовой линии вокруг общей оси. Две цепи двойной спирали ДНК являются комплементарными (взаимодополняющими), так как расположение органических оснований вдоль двух цепей создает оптимальные условия для возникновения водородных связей. [c.465]

    РНК исследовались методом рентгеноструктурного анализа с целью установления того, имеют ли их полинуклеотидные цепи спиралевидную форму, аналогичную ДНК, но до настоящего времени определенных выводов сделать не удалось из-за отсутствия однородных образцов кристаллической РНК. Однако дрожжевую транспортную РНК удалось очистить и получить в кристаллическом состоянии. Получены хорошие рентгенограммы этого вещества, и они оказались чрезвычайно сходными с теми, которые дает ДНК таким образом, эти две структуры должны быть близкими. В соответствии с этим вероятное строение дрожжевой транспортной РНК должно быть таким, при котором каждая полинуклеотидная цепочка сложена вдвое по всей длине и скручена таким образом, что образует двойную спираль. Две половины цепи РНК соответствуют, следовательно, комплементарным цепям ДНК. Не вызывает сомнения, что спиральная структура поддерживается за счет водородных связей между парами оснований аденин — урацил и гуанин — цитозин (партнеры, образующие такую пару, находятся в разных половинах цепи). В месте перегиба цепи имеется несколько неспаренных оснований, и небольшой хвост неспаренных оснований имеется на одном из концов цепи. В этом состоит главное отличие спиральной конфигурации дрожжевой транспортной РНК от спиральной конфигурации ДНК. Дифракционная картина, полученная при рентгеноструктурном исследовании РНК из других источников, сходна с дифракционной картиной, полученной при исследовании дрожжевой транспортной РНК следовательно, спиральная конфигурация присуща, по-видимому, многим формам РНК. [c.142]


    Молекула ДНК состоит из двух спиралей, закрученных одна относительно другой в противоположных направлениях. Следует уточнить структуру этих спиралей. Речь идет о полинуклеотидных спиралях, поскольку фосфатные и углеводные фрагменты располагаются снаружи двойной спирали. Гетероциклические основания, формирующие собственно спираль, располагаются внутри. Н-Связывание между фрагментами оснований обеспечивает устойчивость двойной спирали. При этом Н-связи являются достаточно прочными лишь между определенными парами оснований. [c.538]

    Предложенная ими модель представляет собой спираль из двух скрученных одна вокруг другой полинуклеотидных цепей, причем цепи эти антипараллельны,т. е. направлены в противоположные стороны. [c.175]

    Мы сразу же поняли, что строение ДНК может оказаться более сложным, чем строение а-спирали. В а-спирали одна полипептидная цепь (последовательность аминокислот) сворачивается в спираль, удерживаемую водородными связями между группами этой же цепи. Морис, однако, сказал Фрэнсису, что диаметр молекулы ДНК больше, чем это было бы, если бы она состояла только из одной полинуклеотидной цепи (последовательности нуклеотидов). Это навело его на мысль, что молекула ДНК представляет собой сложную спираль, состоящую из нескольких полинуклеотидных цепей, завернутых одна вокруг другой. В этом случае всерьез приниматься за построение модели можно было, только решив заранее, как соединены эти цепи друг с другом водородными свя- [c.37]

    Пространственная структура нуклеиновых кислот соответствует ансамблю двух полинуклеотидных цепей, закрученных в двойную спираль, при этом остаток гуанина одной цепи находится напротив остатка цитозина другой цепи, и одновременно напротив друг друга располагаются остатки аденина и тимина (или урацила). При нагревании раствора нуклеиновой кислоты спираль разворачивается и цепи разъединяются. [c.552]

    В процессе Р. двойная спираль ДНК, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей при этом исходные цепи ДНК играют роль матриц. Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична др. исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали, каждая из к-рых состоит из одной старой (исходной) и одной новой цепи (рнс. 1). Таким образом от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК,-т. наз. полуконсервативный механизм Р. [c.252]

    Что же можно сказать о вторичной структуре нуклеиновых кислот Приведенная ниже картина находится в соответствии как с химическими данными, так и с результатами рентгеноструктурного анализа. Две полинуклеотидные цепи, идентичные, но ориентированные в противоположном направлении, закручены друг относительно друга в двойную спираль, имеющую диаметр 18 А (1,8 нм) (схематически показана на рис. 37.8). Обе спирали являются правыми и содержат по 10 нуклеотидов на один виток. [c.1062]

    Рис. 2.15. функционирование ДНК-полимераз. Двойная спираль ДНК состоит из двух полинуклеотидных цепей противоположной полярности (они антипа-раллельны ). Если свободная , не связанная с соседним нуклеотидом З -ОН группа находится у одной цепи на левом конце, то в другой цепи такая же группа находится на правом конце. Репликация ДНК катализируется ДНК-полиме-разами. Для функционирования такого рода ферментов необходимы 1) матрица, которая представляет собой одиночную цепь ДНК, 2) праймер-короткий отрезок реплицированной нуклеиновой кислоты и 3) смесь дезоксинуклеозид-5 -трифосфатов. ДНК-полимеразы способны присоединять свободные нуклеотиды только к свободному З -ОН-концу нуклеотидной цепи. Таким образом, синтез протекает только в направлении 5 - 3, но не наоборот. [c.39]

    В работах Штейнера [П и Т. М. Бирштейн [ ] было теоретически исследовано влияние ионизации оснований на переход спираль — клубок в полинуклеотидной цепи, а также влияние такого перехода на кривые титрования, т. е. кривые зависимости степени ионизации а макромолекулы от величины pH раствора. Предположим, по-прежнему, что нуклеотидные, остатки двух цепей могут соединяться друг с другом единственным образом и не будем учитывать гетерогенности состава молекулы. Каждая пара оснований молекулы может находиться в одном из трех состояний состояние О—пара мономерных единиц не связана водородной связью и не заряжена, состояние О —пара мономерных единиц не связана водородной связью и заряжена, состояние 1—пара мономерных единиц связана водородной связью и не заряжена. Поскольку ионизацию, не сопровождаемую разрывом водородной связи, мы считаем невозможной, состояние 1, в котором пара мономерных единиц заряжена и связана водородной связью, не рассматривается. Мы приписываем здесь каждой паре оснований одно заряженное состояние, поскольку константы ионизации групп —К Нг и —NH—СО— сильно различаются, так что области титрования этих групп не перекрываются, и их можно рассматривать независимо. Будем в дальнейшем для определенности считать, что заряжается кислотная группа —NH—СО—, т. е. речь идет о щелочной области pH. Ионизацию фосфатных групп мы по-прежнему не учитываем, так как в рассматриваемом диапазоне pH состояние их ионизации не меняется. Энергия электростатического взаимодействия фосфатных групп с зарядами пуриновых и пиримидиновых оснований, являющаяся функцией ионной силы раствора, может быть введена в константу ионизации этих оснований. [c.373]


    Томас объяснил полученные результаты с помощью молекулярной модели ДНК Уотсона—Крика (см. стр. 86). Согласно этой модели, каждая молекула ДНК представляет собой систему, состоящую из двух параллельных спиралей, причем каждое звено одной цепи соединено водородными связями с противолежащим звеном другой. Схематически такая структура показана на рис. 191. При этом оказывается возможным разрыв многих связей в обеих полинуклеотидных цепях без заметного изменения молекулярного веса, так как водородные связи продолжают удерживать фрагменты обеих цепей вместе. [c.697]

    Помимо того, что ДНК контролирует процесс образования других молекул, она копирует сама себя. Уотсон и Крик постулировали следующий механизм удвоения числа молекул ДНК в процессе деления клетки двойная спираль комплементарных полинуклеотидов начинает раскручиваться на отдельные цепи новые полинуклеотидные цепи начинают синтезироваться на старых, как на матрицах новая цепь, синтезированная рядом со старой цепью, идентична другой старой цепи, что сохраняет комплементарность. Таким образом, когда процесс завершается, получаются две двойные спирали, каждая из которых состоит из одной старой [c.687]

    Вторичная структура молекулы ДНК, по Уотсону и Крику, представляет собой а-спираль, состоящую из двух полинуклеотидных цепей, закрученных одна вокруг другой и вокруг общей для обеих цепей оси (рис. 70), Эти цепи связаны водородными связями меж- [c.393]

    При изучении ДНК рентгенографическим методом было установлено, что макромолекулы имеют строго регулярное строение, а химическое исследование показало, что число пиримидиновых оснований всегда равно числу пуриновых аденина всегда столько же, сколько тимина цитозина столько же, сколько гуанина. Объяснение этим фактам дали Д. Уотсон и Ф. Крик в своей модели двойной спирали (1953 г.). Двойная спираль, как видно из рис. 37, похожа на винтовую лестницу. Две стойки этой лестницы образованы основной цепью, состоящей из углеводных и фосфатных остатков, азотистые основания образуют как бы ступеньки лестницы. Азотистое основание одной полинуклеотидной цепи связано водородными связями с азотистым основанием другой цепи  [c.395]

    Вторичная структура молекулы ДНК, согласно модели американских биохимиков Уотсона и Крика, представляет собой двойную спираль. Схематически она напоминает винтовую лестницу, перила которой образованы основной цепью из углеводных и фосфатных групп, в то время как азотистые основания между двумя цепями образуют ступени . Азотистое основание одной полинуклеотидной цепи связано с основанием другой с помощью водородных связей таким образом, что две половинки ступеней образуют довольно прочное соединение. Последовательность азотистых оснований А-Т и Г-Ц одной цепи полностью комплементарна последовательности другой цепи. В такой структуре каждая пара оснований удалена друг от друга на 3,4 нм, что соответствует одному витку спирали из десяти нуклеотидов (см. рис. 80, 81, б). [c.218]

    Метод плавления двойной спирали ДНК с последующим ее восстановлением из комплементарных одноцепочечных полинуклеотидных нитей нашел одно из своих наиболее интересных применений в систематике высших организмов. Основная идея, лежащая в основе такого использования, сводится к следующему чем больше одинаковых генов у двух организмов и, следовательно, чем больше у них одинаковых последовательностей оснований в ДНК-полинуклеотиде, тем ближе их родство. Следовательно, чтобы установить степень родства между организмом А и организмом В, необходимо только выделить ДНК из их клеток, нагреть ее, провести отжиг этой смеси ДНК и установить количество образовавшихся гибридных двойных спиралей, которые несут одну полинуклеотидную цепь, полученную от А, а другую — от В. Для осуществления таких экспериментов Боултон и Мак-Карти разработали простой метод определения и количественной оценки гибридных двойных спиралей ДНК. Для этой цели ДНК, экстрагированную из организма А, нагревают до 100 С и быстро охлаждают для разделения нативных молекул ДНК на отдельные полинуклеотидные цепи. Такие разделившиеся цепи добавляют к горячему раствору расплавленного агара, который затем быстро охлаждают. При затвердевании агара отдельные цепи ДНК оказываются неподвижно закрепленными в агаровом геле. Тем временем клетки организма В выращиваются в присутствии радиоактивного предшественника ДНК, такого, как ФО " или С-тимин. Радиоактивную ДНК экстрагируют затем из клеток В, разрывают механически на относительно короткие полинуклеотидные фрагменты, содержащие около 1000 нуклеотидов в длину, нагревают и быстро охлаждают для разделения двойных спиралей на отдельные цепи и затем добавляют к агару, в котором уже закреплены отдельные цепи ДНК из организма А. После этого агар нагревают до 60 °С и выдерживают при этой температуре в течение ночи. В этих условиях начинают образовываться двойные спирали, содержащие одну полинуклеотидную цепь из организма А, а другую— из организма В. Затем через агар пропускают солевой раствор, чтобы отмыть все типы В-поли-нуклеотидных цепей, не образовавших двойных спиралей с закрепленными в агаре А-полинуклеотидными цепями и, следовательно, не включившихся в агар. Определив включение радиоактивных В-цепей, устанавливают, какая доля меченой ДНК организма В может образовать двойные спирали и, следовательно, имеет одинаковые нуклеотидные последовательности с немеченой ДНК организма А. [c.183]

    В 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеностр тстурного анализа кристаллов ДНК, прищли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рис. 3.3). Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рис. 3.4). При этом аденин образует пару только с тими-ном, а гуанин - с цитозином. Пара оснований А-Т стабилизируется двумя водородными свя- [c.30]

    Пространств, структура ДНК описывается как комплекс двух полинуклеотидных антииараллельных цепей (рис. 1), закрученных относительно общей оси, так что углевод-фосфатные цепи составляют периферию молекулы, а азотсодержащие гетероциклы направлены внутрь (двойная спираль Уотсона-Крика). Антипараллельность полинуклеотидных цепей выражается в том, что на одном и том же конце спирали одна полинуклеотидная цепь содержит (незамещенную или замещенную) группу 5 -ОН, а другая З -ОН. Фундам. св-во двойной спирали ДНК состоит в том, что ее цепи комплементарны друг другу (см. Комплементарность) вследствие того, что напротив А одной цепи всегда находится Т другой цепи, а напротив О всегда находится С. Комплементарное спаривание А с Т и О с С осуществляется посредством водородных связей. Классич. двойная спираль Уотсона-Крика получила назв. В-фор- [c.297]

    В. Г. Туманяна, А. С. Заседателева, А. Л. Жузе, С. Л. Гроховского и Б. П. Готтиха. Код, управляющий специфическим связыванием регуляторных белков с ДНК, и структура стереоспецифиче-ских участков регуляторных белков [79]. Как ясно из заглавия статьи, в 1ней расшифровал второй биологический код, выяснен механизм однозначного соответствия полинуклеотидных и полипептидных цепей в процессах узнавания. Механизм узнавания основан на специфическом взаимодействии двух двойных спиралей— нуклеотидной и полипептидной [371]. Регуляторные белки узнают последовательность оснований в двойной спирали ДНК не расплетая ее. Узнавание основано на пространственном соответствии контактных, связывающих друг с другом группировок в полипептидных и полинуклеотидных спиралях. Оно аналогично специфическому совпадению отверстий в двух налагаемых друг на друга перфокартах. Такой способ установления однозначного соответствия авторы называют решеточным принципом узнавания. В качестве контактных групп в нуклеотидных цепях функционируют или гуанин, или цитозин, ТИМИН и аденин, а в полипептидных цепях — только атомы азота амидных групп полипептидного остова. Амидные азоты связываются посредством водородных связей с контактными группами полинуклеотидных цепей. С гуанином способны образовывать водородные связи атомы амидного азота полипептидной цепи нх конформация рассчитана авторами и она оказалась отличной от конформации полипептидной цепи, способной взаимодействовать с тимином. Такие конформационно различные полипептидные цепи называются соответственно g- и /-цепями. Оказалось, что эти две анти-параллельные полипептидные цепи, находящиеся в и/-конформациях, могут соединяться в полипептидную двойную спираль водородными связями, образующими между амидными группами двух цепей, не взаимодействующими с основаниями ДНК. [c.60]

    Известно несколько двойных или множественных полинуклеотидных спиралей с параллельными цепями. В таких структурах уотсон-криковское спаривание оснований не сохраняется. Наиболее изучены двухцепочечные полимеры, в которых обе цепи представляют собой гомополинуклеотиды одного и того же основания. В табл. 3.1 перечислены некоторые структурные особенности двойных спиралей, одна из которых образована про-тонированной ро1у(А), а другая — наполовину протонированной ро1у(С). Легко видеть, что геометрия этих спиралей соверщенно другая, чем у спиралей А- и В-семейств. [c.177]

    В 1953 г. Дж, Уотсон и Ф. Крик сумели правильно интерпретировать данные рентгеноструктурного анализа ДНК, накопленные в лабораториях Р. Франклин и 14. Уилкинса, и на их основе построить модель пространственной структуры ДНК- Они показали, что макромолекула ДНК — это регулярная двойная спираль, в которой две полинуклеотидные цепи строго комплементарны друг другу. Из анализа модели следовало, что после расплетания двойной спирали на каждой из полинуклеотидных цепей может быть построена комплементарная ей новая, в результате чего образуются две дочерние. молекулы, не отличимые от материнской ДНК. Через пять лет М. Мезельсон и Ф. Сталь экспериментально подтвердили этот механизм, а несколько раньше (1956) А. Корнберг открыл фермент ДНК-полимеразу, кщ-орый на расплетенных цепях, как на матрицах, синтезирует новые, комплементарные им цепи ДНК. [c.6]

    В процессе деления клетки двойная спираль, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей с участием ферментов в качестве катализаторов и исходных цепей ДНК в качестве матриц. Новая цепь, синтезирующаяся на одной из исходных цепей, идентична другой исходной цепи, в результате чего сохраняется комплементарность. Таким образом, когда процесс завер- [c.457]

    Если представить, что две спаренные нити-слирали ДНК отделяются одна от другой и попадают в среду, где происходит биосинтез полинуклеотидов из мононуклеотидов, то можно ожидать, что благодаря специфическому спариванию оснований около каждой полинуклеотидной цепи будет образовываться совершенно аналогичная ей вторая цепь, т. е., другими словами, воспроизведется исходная двойная спираль. [c.261]

    Еще более сложные третичные взаимодействия возникают в ядре . Как уже отмечалось, здесь переплетаются четыре разных участка полинуклеотидной цепи. Характерна неканоническая пурин-пуриновая пара G А (или А G, в зависимости от вида тРНК) между остатками 26 и 44 (рис. 23, ). Спаривание G С (или, в других тРНК, А U) между остатками 15 и 48 необычно для двойных спиралей с антипараллельным расположением цепей здесь направление цепей параллельное (рис. 23, в). Еще более необычным является спаривание А с U между остатками 14 и 8, где в образовании водородной связи участвует N7 пуринового [c.38]

    Из рис. 8 видно, что углеводофосфатный остов молекулы обращен наружу. Спираль закручена таким образом, что на ее поверхности можно выделить две бороздки большую шириной 2,20 нм и малую шириной около 1,20 нм (их называют также главным и минорным желобками). Спираль — правозакрученная, а полинуклеотидные цепи в ней антипараллельны. Это означает, что, если двигаться вдоль оси спирали от одного ее конца к другому, в одной цепи будут встречаться фосфодиэфирные связи в направлении 3 - 5, а в другой — в направлении 5 - 3. Ины.ми слова.ми, на каждом из концов линейной молекулы ДНК расположены 5 -конец одной и З -конец другой цепи. [c.22]

    Описание последовательности нуклишовой кислоты отображает её первичную структуру. Расположение длинной линейной полинуклеотидной цепи в пространстве отражается в её вторичной структуре. Вторичные структуры ДНК и РНК различны. Согласно модели Уотсона и Крика, в молекулах ДНК полинуклеотидная цепь спирализов а в правую спираль с периодом идентичности 3,4 нм и расстоянием между плоскостями оснований 0,34 нм. Две цепи сплетены друг с другом в закрученную вокруг одной оси двойную спираль так, по на каждый виток спирали приходится 10 пар оснований диаметр спирали равен 2,0 нм. Обе цепи удерживаются друг около [c.116]

    Вторичная структура ДНК. В соответствии с моделью, предложенной в 1953 г. Дж. Уотсоном и Ф. Криком, она представляет собой двухцепочечную правозакрученную спираль из комплементарных друг другу антипараллельных полинуклеотидных нитей. [c.179]

    Двойвая спираль ДНК - две полинуклеотидные спирали, закрученные одна относительно другой в противоположных направлениях одна цепь ДНК называется темплатной, другая - матричной. [c.543]

    Молекула ДНК представляет собой комплекс из двух полимерных цепочек, связанных между собой межмолекулярными силами (рис. 4.2). Каждая цепочка в комплексе образует правую спираль (точнее, винтовую линию) и состоит из сахаро-фосфатного хребта с присоединенными к нему азотистыми основаниями четырех сортов — аденина (А), гуанина (Г), тимина (Т) и цитозина (Ц). Повторяющийся элемент цепочки (азотистое основание + сахар + фосфат) называется нуклеотидом. Таким образом, ДНК состоит из двух закрученных относительно друг друга полинуклеотид-ных цепочек. Существенно, что если связи между нуклеотидами внутри каждой цепочки являются жесткими, ковалентными и имеют энергию около 60 ккал/моль (3 эВ), то связи между полинуклеотидными цепочками по крайней мере на порядок слабее. Существует строгое правило компле-ментарности (соответствия) этих цепочек. Именно, всегда против аденина находится ТИМИН, а против гуанина цитозин. Комплементарность определяется стерическим соответствием оснований. При этом комплементарные пары оснований стабилизированы водородными связями (изображенными на рис. 4.3 пунктиром), электростатическими и ван-дер-ваальсовыми силами. Существенное значение для стабильности ДНК имеет взаимодействие между соседними парами оснований в двойной спирали. Параметры структуры ДНК следующие диаметр молекулы 20 А, расстояние между соседними парами оснований 3,4 А на виток спирали приходится 10 пар оснований, так что соседние пары повернуты относительно друг друга на угол [c.71]

    Вторичная структура молекул НК представляет собой двуцепную спираль, в которой две комплементарные друг к другу цепи или участки полинуклеотидной цепи тесно сближены и удерживаются за счет водородных связей и гидрофобного взаимодействия специфических пар азотистых оснований. [c.116]

    Предположение о том, что полинуклеотидная цепь молекулы сворачивается на себя, образуя двойную спираль с максимальной длиной участков, состоящих из спаренных последовательностей, подтверждают следующие фактические данные 1) эквивалентность между количеством аденина и урацила, с одной стороны, и между количеством цитозина и гуанина — с другой 2) степень типерхромизма, форма кривой плавления и нео/киданно высокая величина температуры плавления, подтверждающие существован11е очень стабильной спиральной структуры с максимальным теоретически возможным числом пар оснований А — У и Г — Ц  [c.58]

    ДНК — это тот материал, из которого состоят гены. Нить ДНК состоит из большого количества молекул дезоксирибозы, линейно связанных фос-фодиэфирными связями в 3 - и 5 -положениях молекулы сахара. Каждая молекула дезоксирибозы связана в положении Г с пурином или пиримидином. Таким образом, полинуклеотидная цепь представляет собой длинный остов, состоящий из остатков сахара и фосфатных групп, соединенных с пуриновыми основаниями — аденином (А) и гуанином (Г) и пиримидиновыми основаниями — цитозином (Ц) и тимином (Т), расположенными вдоль основной оси молекулы через строго определенные интервалы. Однако нить ДНК представляет собой не одинарную цепь, а двойную, в которой расстояние между осями цепей всегда поддерживается постоянным благодаря тому, что А из одной цепи всегда связывается только с Т из другой цепи, а Г — с Ц. Эти взаимодействия определяются размерами и формами оснований, составляющих каждую пару оснований. Возникающие при этом водородные связи определяют структурную стабильность ДНК- Однако в соответствии со знаменитой моделью Уотсона — Крика эти две цепи ДНК не просто тянутся вдоль друг друга, подобно железнодорожным рельсам, а закручены относительно друг друга, образуя периодическую двойную спираль пары оснований при этом располагаются в плоскости, перпендикулярной оси спирали. Случайный характер распределения четырех оснований вдоль цепи ДНК мог бы привести к возникновению астрономически боль- [c.69]

    Модель Уотсона и Крика — модель макромолекулярной организации ДНК, предложенная Уотсоном и Криком в 1953 г. на основании рентгеноструктурных исследований и данных о химическом строении ДНК. Согласно гипотезе Уотсона и Крика, молекула ДНК состоит из двух полинуклеотидных цепей и образует правовинтовую спираль, в которой обе цепи закручены вокруг одной и той же оси и удерживаются водородными связями между их азотистыми основаниями. Азотистые основания в такой структуре укладываются парами, составленными из пурина одной цепи и пиримидина — другой. Глубокий анализ возможностей образования комплементарных пар показал, что наиболее вероятными являются пары аденин—тимин и гуанин—цитозин. Другие варианты комплементарных пар не получили экспериментального подтверждения. Одним из наиболее важных доводов в пользу того, что молекула ДНК имеет структуру двойной спирали, являются количественные совпадевия в содержании аденина и тимина и гуанина и цитозина. [c.60]

    А. С. Спирин Доти и другие исследователи установили, что РНК в растворе (комнатная температура, ионная сила 10 —10 ) образует ряд спиральных сегментов вследствие попарного комплементарного связывания отдельных участков одиночной полирибонуклеотидной цепи за счет дополнительных взаимодействий между гетероциклическими основаниями, преимущественно аденина с урацилом и гуанина с цитозином Следовательно, отдельные спиральные области РНК построены, по типу двухтяжевых закрученных спиралей, т. е. по типу модели Уотсона — Крика. Поскольку спирализованные участки в РНК образуются в результате изгиба и закручивания одной и той же цепи, то очевидно, что в каждом спирализованном участке полинуклеотидные цепи антипараллельны. [c.430]

    И Крик Пришли К заключению, что спираль ДНК должна содержать две полинуклеотидные цепи, или два ряда, в каждом из которых на виток спирали приходится по десять нуклеотидов. Они исходили из того, что плотность цилиндра диаметром 20 и длиной 34 А была бы слишком низкой, если бы он содержал один ряд из десяти нуклеотидов, и слишком высокой, если бы в нем содержалось три или более рядов из десяти нуклеотидов каждый. Однако, прежде чем попытаться расположить эти две полинуклеотидные цепи в виде правильной спирали требуемых размеров, Уотсон и Крик ввели в свою модель другое ограничение, обусловленное тем, что ДНК является генетическим материалом. Если в ДНК содержится наследственная информация и если эта информация записана в виде специфической последовательности оснований вдоль полинуклеотидной цепи, тогда любая произвольная последовательность оснований вдоль полину-клеотидных цепей ДНК должна согласоваться с ее молекулярной структурой. В противном случае способность ДНК как носителя информации была бы слишком строго ограниченной. С этого времени Уотсон и Крик занялись проблемой построения правильной спирали, которая, будучи построенной из двух полинуклеотидных цепей, содержащих произвольную последовательность оснований каждые 3,4 А вдоль ее длины, имела бы тем не менее постоянный диаметр 20 А. Так как размеры пуринового кольца больше размеров пиримидинового кольца, Уотсон и Крик пришли к заключению, что двухцепочечная спираль могла бы иметь постоянный диаметр, если бы существовала комплементарная взаимосвязь между [c.174]

    При постулировании комплементарных отношений между четырьмя основаниями в ДНК Уотсон и Крик исходили из ограничений, которые накладывались на возможную последовательность оснований требованиями регулярной структуры. Однако они отдавали себе отчет в том, что обязательное спаривание аденина с тимином и гуанина с цитозином, с одной стороны, дает объяснение ранее загадочному правилу эквивалентности Чаргаффа, а с другой стороны, получает неожиданное подтверждение от него. Однако основное значение открытия спаривания оснований для последующего развития молекулярной генетики лежит не в объяснении этих любопытных данных, а в признании того, что полная молекула ДНК является самокомплементарной если наследственная информация записана в полинуклеотидной цепи в виде специфической последовательности четырех оснований, тогда каждая молекула ДНК несет два полных набора такой информации, хотя и написанной комплементарными буквами. Комментируя этот факт, Уотсон и Крик заканчивают свое первое письмо в Nature, в котором они описывают двойную спираль, утвержде- [c.177]

    НОЧНЫХ (а также ДНК Е. соН) заключали в агар и определяли улавливание меченных радиоактивными атомами фрагментов ДНК, выделенной из клеток мыши или человека. В ходе этой работы было получено три важных результата. Во-первых, можно видеть, что только 18% добавленных фрагментов ДНК человека улавливается ДНК человека. Более того, только 22% добавленных фрагментов ДНК мыши подобным же образом улавливается мышиной ДНК. Отсутствие 100%-ного улавливания меченой ДНК из двух гомологичных организмов объяснялось тем, что более часто образование двойных спиралей происходит между самими добавленными фрагментами полинуклеотидной цепи, чем между ними и закрепленной ДНК. Следовательно, примерно 20% улавливания можно считать верхним пределом, свидетельствующим о полной гомологии закрепленных и добавленных видов ДНК. Во-вторых, можно видеть, что 6% добавленной ДНК человека улавливается мышиной ДНК и что 5% добавленной мышиной ДНК улавливается ДНК человека. Эти числа показывают, что ДНК человека и мыши имеют 6/22 = 0,27 или 5/18 = — 0,27 одинаковой полинуклеотидной последовательности. В-третьих, можно видеть, что по числу нуклеотидных последовательностей ДНК макака-резуса ближе к ДНК человека, а ДНК крысы стоит ближе к ДНК мыши, т. е. каждый из выводов полностью отвечает обычным таксономическим критериям. ДНК морской свинки и кролика так же далеки от ДНК человека, как ДНК крысы и хомячка. ДНК лосося еще более далека от ДНК человека и мыши, чем ДНК других млекопитающих. Наконец, агаром, содержащим ДНК человека илидмыши, улавливается ДНК Е. соН, но количество улавливаемой ДНК при этом не превышает того количества, которое улавливается агаром, совсем не содержащим закрепленной ДНК. Следовательно, человек и мышь практически не имеют одинаковых с Е. oli генов. [c.184]

    Согласно первой догме, генетический код представляет собой точную последовательность нуклеотидов, с помощью которой генетическая информация гена записана в полинуклеотидных цепях ДНК. Иными словами, длинная двойная спираль ДНК должна представлять собой подобие телеграфной ленты, на которой записана информация с помощью четырехбуквенного алфавита — А, Г, Ц и Т. Такая информация, как уже указывалось в этой главе, в каждой молекуле ДНК записана дважды, и, следовательно, она дважды записана и в каждом гене, так как любое основание, находящееся в одной цепи из двух спирально закрученных полинуклеотидов, определяет комплементарное ему основание в другой цепи. Из этого следует, что, хотя для записи наследственной информации используется один и тот же четырехбуквенный алфавит, информация в двух цепях ДНК записана различным языком. [c.185]


Смотреть страницы где упоминается термин Другие полинуклеотидные спирали: [c.386]    [c.624]    [c.53]    [c.46]    [c.23]    [c.292]    [c.95]    [c.69]   
Смотреть главы в:

Биофизическая химия Т.1 -> Другие полинуклеотидные спирали




ПОИСК







© 2025 chem21.info Реклама на сайте