Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алмаз свойства

    Для твердых тел чаще более характерны смешанные виды связи. Известно, что ионная и ковалентная связи, а также ковалентная и металлическая не имеют резкого разграничения и может наблюдаться переход от одного вида связи к другому. Так, упрочнение металла в результате пластической деформации и легирования объясняется превращением металлической связи в ковалентную. При деформации в металлах появляются области высокой прочности и малой пластичности, приближающиеся по своим свойствам к типичным веществам, обладающим ковалентной связью (алмазу). [c.10]


    Величина энтропии сложным образом отражает всю совокупность свойств соединения в данном его агрегатном состоянии. Из таблицы, приведенной ниже, видно, что энтропия веществ зависит от молекулярного веса (и увеличивается с его ростом в ряду близких по свойствам веществ), от агрегатного состояния веществ (н возрастает при переходе от твердых тел к жидким и особенно к газообразным), а также от кристаллического строения (ср. энтропии графита и алмаза), изотопного состава (Н О h DjO) н структуры молекул (н-бутан и изобутан). [c.101]

Таблица 43. Физические свойства графита и алмаза Таблица 43. <a href="/info/6739">Физические свойства</a> графита и алмаза
    Для В (аморф.), С (алмаз), Mn(v) и Р (бел.) базисным состоянием служит та же форма при 298,15 К. Термодинамические свойства ее при этой температуре приведены в табл. 2. [c.336]

    Почему алмаз обладает свойствами диэлектрика Какими свойствами мог бы обладать углерод, если бы он кристаллизовался в объемно-центрированную кубическую структуру  [c.641]

    Карбиды представляют собой кристаллические тугоплавкие вещества очень большой твердости. Так, карбиды вольфрама почти не уступают по твердости алмазу. Свойства карбидов хрома, молибдена и вольфрама приведены в табл. 23. [c.287]

    Соединения с решет,кой алмаза. Свойства соединений этой и предыдущей групп аналогичны, однако рассматриваемые соединения не обладают металлической проводимостью. В эту группу входят A1N, В4С, BN, Si . [c.608]

    Кристаллы боразона окрашены в цвета от желтого до черного или бесцветны. Боразон очень твердый и в этом отношении почти не уступает алмазу (некоторые образцы боразона даже царапают алмаз). К тому же в отличие от последнего он механически более прочен и термически более стоек. Наиример, при нагревании в вакууме до 2700°С боразон совершенно не изменяется, при нагревании на воздухе до Ю00"С лишь слегка окисляется его поверхность, тогда как алмаз сго-рает уже при 900°С. Как и алмаз, боразон — диэлектрик. Указанные свойства определяют все возрастающее значение боразона для техники. [c.440]

    Изменение структуры в ряду С—РЬ соответствует изменению их физических свойств. Кремний, германий и а-олово — полупроводники, а (3-олово и свинец — металлы. Изменение типа химической связи в ряду С (алмаз) — РЬ от ковалентной до металлической сопровождается понижением твердости веществ. Алмаз — самый твердый из всех простых веществ, довольно твердые и хрупкие кремний и германий, свинец же легко прокатывается в топкие листы. [c.188]


    Предельным случаем такого процесса конденсации циклов является графит, состоящий из атомных плоскостей с гексагональными циклами, в которых делокализация электронов простирается на всю плоскость. Благодаря наличию делокализованных электронов графит является хорошим проводником электричества в отличие от алмаза, который обладает свойствами диэлектрика. Графит можно рассматривать как двумерный металл, в котором подвижность электронов ограничена отдельными атомными плоскостями, упакованными в стопку. [c.301]

    Кристалл 2п8 может рассматриваться как ковалентная каркасная структура, в которой каждый атом 2п связан с четырьмя атомами 5, а каждый атом 5 связан с четырьмя атомами 2п. Сульфид цинка обнаруживает свойства диэлектрика, хотя и не в такой мере, как алмаз. Вместе с тем его можно рассматривать как ионный кристалл, состоящий из ионов 2п" и 8" с координационным числом 4 каждый. Наконец, его можно рассматривать и как металлическую структуру (гексагональную плотноупакованную), построенную из анионов 8"", в которой половина тетраэдрических дырок (вакансий) занята ионами 7п"  [c.527]

    Полезно подчеркнуть, что свойства веществ в кристаллическом состоянии зависят не только от состава и условий существования, как в случае газов и жидкостей, но и от внутреннего строения. Так, хорошо известно, что хотя алмаз и графит совершенно одинаковы по составу, однако по своим свойствам они резко различны. Алмаз, например, обладает наибольшей твердостью по сравнению со всеми другими природными материалами (вспомним алмазное бурение) графит же, наоборот, очень мягок и применяется для смазки трущихся металлических поверхностей, изготовления карандашей и т. д. [c.121]

    Установленные экстремальные значения показателей свойств нефтяного кокса в зависимости от его плотности дают основание предполагать существование еще по крайней мере двух экстремумов кратного 5/Сп, соответствующего второму неустойчивому состоянию, и 6/Сп, соответствующего алмазу. [c.236]

    Свойства серебра. Серебро — уникальный катализатор окисления этилена. Все катализаторы, практически используемые для этой реакции, основаны на серебре. Серебро — лучший среди проводников электричества (его электропроводность составляет 1,67 мкОм/см) и лучший после алмаза проводник тепла с теплопроводностью 4,29 Вт/(см-К). Данные об адсорбции на чистом металлическом серебре этилена, окиси этилена, воды и диоксида углерода противоречивы, так как очень трудно получить чистую поверхность серебра, но можно утверждать, что ни одно из этих соединений не адсорбируется на серебре достаточно хорошо. Окись этилена и в гораздо меньшей степени диоксид углерода могут адсорбироваться и затем быстро реагировать и разлагаться на поверхности серебра, загрязняя ее кислородсодержащими формами. Трудность, сопряженная с получением чистых и воспроизводимых поверхностей, показана в работе [20] и других. [c.226]

    Под именем элементов должно подразумевать те материальные составные части простых и сложных тел, которые придают им известную совокупность физических и химических свойств. Если простому телу соответствует понятие о частице, то элементу отвечает понятие об атоме. Углерод есть элемент, а уголь, графит, алмаз суть тела простые. [c.7]

    Алмаз, так же как и графит, по своему химическому составу представляет собой чистый углерод. Они являются полиморфными модификациями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток. [c.43]

    В соответствии с различием в кристаллической структуре (в особенности в типах химической связи) полиморфные модификации различаются (иногда очень резко) по своим физическим свойствам — плотности, твердости и пластичности, электрической проводимости и пр. Так, графит черного цвета, непрозрачен, проводит электрический ток алмаз — прозрачен, электрический ток практически не проводит. Графит—мягкое вещество, а алмаз — самое твердое из всех известных природных веществ плотность графита 2,22 г/см , алмаш 3,51 г/см . Полиморфные модификации отличаются, иногда очен11 заметно, и по своей химической активности. [c.111]

    Фуллерены являются единственной из трех известных в настоящее время аллотропных модификаций углерода (графит, алмаз, фуллерены), которые обладают растворимостью в широком классе органических растворителей [20]. Такая особенность фуллеренов связана с их молекулярной структурой, в отличие от сшитых полимерных сеток графита и алмаза. Свойство растворимости фуллеренов имеет широкое практическое применение. Прежде всего - в процессах выделения фуллеренов из продукта термического разложения графита в электрической дуге - фуллеренсодержащей сажи, а также при разделении смесей фуллеренов различного сорта, например, гюсредством хроматофафических методов. Фуллеренсодержащая сажа (Ф-сажа) представляет собой мелкодисперсный порошок черного цвета, основную долю которого (80-90 % по массе) составляет аморфный углерод. Остальные 10-20 % по массе Ф-сажи составляют фуллерены (80-95 % С60, 5-20 % - С70 и следовые количества высших фуллеренов - С7б, С78, С84, до С100). При обработке Ф-сах<и органическими растворителями (эксфакции) фуллерены количественно переходят в раствор, тогда как мафица из аморфного углерода является нерастворимой частью Ф-сажи. [c.40]


    Установление химической природы алмаза. Свойство сильно преломлять световые лучи алмаз разделяет с некоторыми горючими веществами. Это навело Ньютона, когда он писал свою Оптику , на мысль, что алмаз должен быть горючим вещест-во.м. Впрочем, и помимо каких бы то ни было лжетеоретических соображений, алмазу нельзя было миновать испытания всеобщим анализатором — огнем. Первый опыт сжигания алмаза был произведен во Флорентийской академии. На глазах зрителей довольно крунный алмаз, когда на нем при помощи большого зажигательного зеркала был сконцентрирован солнечный свет, раскалился, стал уменьшаться в размерах, ре плавясь, и скоро бесследно исчез. Но сгорает ли алмаз в сильном жару или просто испаряется — этот вопрос оставался открытым до Лавуазье, который приступил к его решению во всеоружии новых взглядов на природу горения. Сначала французский ученый убедился в том, что если воздух из сосуда, в котором накаливается алмаз, выкачан, алмаз не исчезает, сколько бы ни была высока температура в печи. Таким образом, исчезновение алмаза в предыдущем опыте может быть объяснено только сгоранием, а" не простым испарением. [c.381]

    Установление химической природы алмаза. Свойство сильно преломлять световые лучи алмаз разделяет с некоторыми горючими веществами. Это навело Ньютона, когда он писал свою Оптику , на мысль, что алмаз должен быть горючим веществом. Впрочем, и помимо каких бы то ни было лжетеоретических соображений, алмазу нельзя было миновать испытания всеобщим анализатором — огнем. Первый опыт сжигания алмаза был произведен во Флорентийской академии. На глазах зрителей довольно крупный [c.521]

    Из рис. Х-1 видно, что наиболее устойчивой формой углерода при обычных условиях является графит. Теплота его сгорания (до СО2) составляет 94 ккал1г-атом. У алмаза она равна 94,5, а у аморфного углерода 96—98 ккал1г-атом. Переход меиее устойчивых форм в графит при обычных условиях не происходит, но выше 1500° С (в отсутствие воздуха) он идет довольно быстро. Имеется указание на то, что из графита при 700 тыс. атм (наложение в течение нескольких секунд) возникает новая твердая фаза, плотность которой выше плотности алмаза. Свойства ее пока неизвестны, [c.12]

    При обычной температуре элементарный углерод весьма инертен. При высоких же температурах он непосредственно взаимодействует с многими металлами и неметаллами. Углерод проявляет восстановительные свойства, что широко используется в металлургии. Окислительные свойства углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои С200 играют роль самостоятельных радикалов. [c.394]

    Простые вещества. В ряду Ое—5п—РЬ отчетливо усиливаются металлические свойства простых веществ. Германий — серебристо-белый с желтоватым оттенком, внешне похож на металл, но имеет алмазоподобную решетку. Олово полиморфно. В обычных условиях оно существует в виде 8-модификацни (белое олово), устойчивой выше 13,2°С это — серебристо-белый металл, кристаллическая решетка его тетрагональной структуры с октаэдрической координацией атомов. При охлаждении белое олово переходит в -модификацию (серое олово) со структурой типа алмаза (пл. 5,85 г/см ). Переход (3-> -сопровождается увеличением удельного объема (на 25,6 %), в связи с чем олово рассыпается в пороиюк. Свинец — темно-серый металл с типичной для металлов структурой гранецентрированного куба. [c.422]

    Амфотерные и основные оксиды представляют собой кристаллические вещества с очень высокими температурами плавления. Например, А12О3 используется в качестве абразива, известного под названием корунд, или наждак, а ЗЮз-это кварц. Только оксиды углерода, азота, серы и галогенов в нормальных условиях находятся в жидком или газообразном состоянии. Различие между С и 81 в диоксиде углерода и кварце аналогично различию между С и N в алмазе и газообразном азоте. Разница в свойствах С и 81 обусловлена тем, что С способен образовывать двойные связи с О и поэтому они образуют друг с другом молекулярное соединение с ограниченным числом атомов. Между тем 81 должен образовывать простые связи с четырьмя различными атомами О в результате возникает протяженная трехмерная структура, в которой тетраэдрически расположенные атомы 81 связаны мостиковыми атомами О. [c.322]

Рис. 14-28. Два варианта расчетной зонной структуры кристаллического углерода. При структуре а уиюрод должен был бы обладать свойствами проводника, а структуре б соответствуют свойства диэлектрика, наблюдаемые в действительности для алмаза. Рис. 14-28. Два <a href="/info/64859">варианта расчетной</a> <a href="/info/1552143">зонной структуры кристаллического</a> углерода. При структуре а уиюрод должен был бы <a href="/info/1557616">обладать свойствами</a> проводника, а структуре б <a href="/info/1908243">соответствуют свойства</a> диэлектрика, наблюдаемые в действительности для алмаза.
    В периодической системе нет резкой границы между элементами с металлической структурой и элементами с ковалентной каркасной структурой (рис. 14-8). Это видно из того, что кристаллы некоторых элементов обладают свойствами, промежуточными между проводниками и изоляторами. Кремний, германий и а-модификация олова (серое олово) обладают кристаллической структурой алмаза. Однако межзонная щель между заполненной и свободной зонами в этих кристаллах намного меньше, чем для углерода. Так, ширина щели для кремния составляет всего 105 кДж моль (Как мы уже знаем, для углерода она равна 502 кДж моль .) Для германия ширина межзонной щели еще меньше, 59кДж моль а для серого олова она лишь 7,5 кДж моль Ч Металлоиды кремний и германий называются полупроводниками. [c.631]

    Замешение атомов цинка и серы в структуре вюртцита (рис. 14-10) на атомы углерода приводит к образованию структуры алмаза (рис. 14-5). Оптические и электрические измерения, проведенные на образцах ZnS, показывают, что зрнная щель в этом веществе равна приблизительно 3,6 эВ. Обсудите свойства ZnS на основе использования трех различных моделей связи (неметаллическая ковалентная каркасная модель, модель ионной связи и металлическая модель), которые поочередно применялись к описанию этого вещества. [c.643]

    Карбид, или так называемый карборунд, 31С. Это соединение образуется прн восстановлении оксида кремния 510 углем ири температуре около 2000°С АН = —66,1, А0 = —63,7 кДж/моль). Чистый карбид кремния — бесцветные кристаллы (технический окрашен обычно примесями в темный цвет). Кристаллическая решетка карбида кремния напоминает кристаллические решетки алмаза и элементарного кремния структуру кристаллов карборунда можно представить, если в расширенной решетке алмаза каждый второй атом углерода заменить атомом кремния. Плотность карбида кремния 3,22 г/см , его теплое.мкость 26,86 и энтропия 16,61 Дж,/(моль-К). Характерным свойством карборунда являются чрезвычайно большая твердость (в этом отношении он лишь немногим уступает а./шазу) и химическая инертность. Лишь при 2830°С он плавится с разложением. На карбид кремния не действуют даже сильнейшие окислители и кислоты, за исключением смеси азотной и [1лавиковой кислот. Он разлагается также при сплавлении со щелочами в присутствии кислорода. [c.359]

    Графит - одна из аллотропных форм углерода. Алмаз является другой формой и, кроме того, в литературе [.7 ] описываются свойства аморфного углерода, который внешне похож на гоафит. Графит имеет истинную плотность 2250 кг/м, аморфный углерод-1880кгЛр, алмаз - 3510 кг/м . Графитированные материалы весьма термостойки при температурах 3000 °С и выше в отсутствие окислителя среды, что делает их незаменимыми материалами в космической технике. [c.14]

    Родоначальник подгруппы — углерод (лат. сагЬопеит) существует в свободном виде в двух аллотропных модификациях — графит и алмаз,— резко различающихся по строению и свойствам (см. ниже). Углерод — один из важнейших элементов в природе. Его соединения составл.чгот основу живей природы — флоры и фауны. [c.130]

    Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием технЕжи, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовлешы тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. В последние годы все больше привлекают внимание другие исключительные свойства алмаза его, электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации. [c.43]

    Одно и то же вещество может принимать различные так называемые аллотропические модификации кислород и озон, графит и алмаз. С аллотропией тесно связано свойство полиморфиз.ма, когда в зависимости от изменения внешних условий вещество может последовательно находиться в нескольких кристаллических состояниях пояи.морфных модификациях) с различной структурой. [c.53]


Смотреть страницы где упоминается термин Алмаз свойства: [c.11]    [c.396]    [c.161]    [c.437]    [c.437]    [c.356]    [c.524]    [c.8]    [c.346]    [c.352]    [c.356]    [c.50]    [c.21]    [c.57]   
Справочник Химия изд.2 (2000) -- [ c.314 ]

Аккумулятор знаний по химии (1977) -- [ c.151 ]

Аккумулятор знаний по химии (1985) -- [ c.151 ]

Как квантовая механика объясняет химическую связь (1973) -- [ c.262 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.499 ]




ПОИСК





Смотрите так же термины и статьи:

Алмаз



© 2025 chem21.info Реклама на сайте