Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура пламени газовых горелок

    Сварка цветных металлов. Медные листы толщиной более 8 мм сваривают электродуговой сваркой вручную с предварительным подогревом свариваемого участка до температуры 250— 400 °С, в зависимости от толщины свариваемых листов. Такая температура должна поддерживаться и в процессе сварки. Наиболее часто применяемый способ подогрева — пламя газовой горелки. В качестве электродов применяют проволоку из меди марок М1, М2, МЗр с электродным покрытием марки Комсомолец-100 . [c.100]


    Если в лаборатории нет паяльных горелок, а для работы необходимо узкое и направленное пламя, можно воспользоваться паяльной трубкой (рис. 45), кончик которой сужен. В трубку 2 подают воздух (резиновой грушей, компрессором, пылесосом или из магистрали), суженный конец ее помещают в пламя обычной газовой горелки. Если паяльная трубка помещена в само пламя газовой горелки (а), образуется окислительный конус пламени если же трубка находится на некотором расстоянии от пламени газовой горелки (б), образуется восстановительный конус. Температура пламени паяльной трубки может быть доведена до 1000 С. Паяльной трубкой пользуются, [c.53]

    Температура пламени. Температура в разных местах и слоях пламени различная. Для ее измерения применяют гермопару такого устройства, чтобы спай можно было помещать в разных местах пламени и находить температуру в намеченной точке пламени. Результаты такого измерения температуры пламени газовой горелки Бунзена показаны на рисунке 259, В. Исследование температуры пламени можно провести и без применения термопары, иным, более простым способом. С этой целью берется тонкая проволочка из меди, например одна из тонких проволочек от электрического шнура. Кончик такой проволочки, держа ее поперек пламени, помещают в разных местах и на различной высоте в пламя и наблюдают действие пламени на проволочку. Наблюдения обнаруживают следующие явления. В центральной [c.348]

    Палочка, отлитая из олова, при обычной температуре легко гнется. Теперь конец палочки внести в пламя газовой горелки и нагревать до тех пор, пока олово не начнет легко ломаться при помощи плоскогубцев или щипцов. Олово делается хрупким при 200° С. Когда оно достаточно остынет, то снова станет легко гнуться. [c.166]

    Окрашивание пламени газовой горелки. Платиновую или нихромовую проволоку с петлей (или с крючком) на конце предварительно очищают, погружая ее в разбавленную НС1, затем прокаливая в пламени газовой горелки и охлаждая до комнатной температуры. На кончик подготовленной таким путем платиновой или нихромовой проволоки, смоченной разбавленной НС1 (иногда для тех же целей используют графитовый стержень), помещают несколько крупинок анализируемого вещества и вносят в пламя газовой горелки. Смачивание проволоки хлороводородной кислотой проводят для того, чтобы получить в пламени летучие хлориды катионов, присутствующих в пробе (если она содержит нелетучий или труднолетучий компонент). [c.503]

    Фарфор применяют для изготовления тиглей, лодочек, чашек, ступок, шпателей, стаканов и других изделий. Тонкостенные фарфоровые тигли можно вносить прямо в пламя газовой горелки, а затем охлаждать до комнатной температуры. Толстостенные стаканы и чашки следует нагревать с осторожностью, их нельзя греть на открытом пламени, а следует применять сетки с асбестовой накладкой (см. раздел 1.10). [c.19]


    Так, атом натрия в основном состоянии имеет конфигурацию Is 2 2 2/ 3s . Электрон -орбитали может быть легко возбужден, так что перейдет на Зр-орбиталь. Возвращение возбужденного электрона обратно на 35-орбиталь сопровождается излучением фотона в видимой области спектра. Поэтому при внесении натриевой соли в бесцветное пламя газовой горелки она окрашивается в желтый цвет. Под действием высокой температуры пламени наступает термическая диссоциация соли, возбуждение 35-электрона и эмиссия желтого света (Я = 589 нм) при его возвращении на исходную 35-орбиталь. [c.156]

    Пламя газовой горелки регулируют так, чтобы первая капля с конца отводной трубки колбы упала не раньше, чем через 15 мин,. и не позже, чем через 20 мин от начала нагрева. Температуру, при которой упала эта первая капля, фиксируют как начало кипения (н. к.) продукта и заносят ее в рабочий журнал, отмечая при этом. соответствуюш,ее давление по вакуумметру. [c.149]

    Для исследования поведения тяжелой перекиси при более высокой температуре небольшое количество ее на стеклянной палочке вносилось в пламя газовой горелки перекись сгорала при этом мгновенно со вспышкой, без взрыва. [c.133]

    Для того чтобы обеспечить проведение исследования в однородных условиях, его проводят чаще при 20° С в желтом свете (последний обеспечивают, внося в бесцветное пламя газовой горелки хлористый натрий). Эти условия находят свое отражение в формуле справа от квадратной скобки вверху указывается температура — 20° С, внизу D (буква D обозначает желтую натриевую полосу в спектре). Сделав эти предварительные замечания, возвращаемся к явлению стереоизомерии в ряду оксикислот. [c.150]

    Исследуемое вещество атомизируют, распыляя его раствор в пламя газовой горелки (разновидность фотометрии пламени, см. ниже) или испаряя сухой остаток раствора в электрической трубчатой печи при температурах до 3000°С. Обычно через атомный пар пропускают линейчатое излучение, соответствующее атомному спектру определяемого элемента. [c.234]

    Для контроля за температурой в баню всегда вводят термометр (из металлических и парафиновых бань его необходимо-удалять до затвердевания расплава). Температуру можно поддерживать вблизи некоторого значения, если ограничить подвод тепла в единицу времени, например, регулируя пламя газовой горелки или подключив электронагреватель через трансформатор или реостат. Однако таким путем в течение долгого времени трудно поддерживать постоянную температуру контроль за температурой и количеством подводимого тепла должен осуществляться постоянно. [c.31]

    Эмиссия (испускание) излучения. Пламя газовой горелки является источником сравнительно низкой энергии. Поэтому температура, получаемая в нем, достаточна лишь для осуществления переходов 6 возбужденное состояние с невысокой энергией, соответствующей энергии фотонов оптической области спектра. Вследствие -этого возбужденные атомы или молекулы возвращаются в основное состояние, излучая ультрафиолетовый или видимый свет. [c.33]

    В несветящемся пламени можно различить три конуса (рис. 2). Внутренний конус наиболее холодный он состоит главным образом из несгоревшего светильного газа и воздуха. Средний конус содержит избыток светильного газа и недостаточное количество кислорода сгорание в нем Рис 2 Распределение происходит неполностью (эта часть температур в пламени называется восстановительным пламе-газовой горелки нем). В наружном конусе происходит [c.10]

    Пламя газовой горелки служит причиной загорания, если оно оказывается вблизи горючих тел. Так, неопытные или недостаточно внимательные сотрудники лаборатории после использования горелки иногда отодвигают ее в сторону, не следя за тем, вблизи чего оказывается пламя. Случается, что пламя поджигает полку лабораторного стола. Правда, при этом редко развивается пожар, так как лак или краски, покрывающие дерево, при соприкосновении с пламенем начинают выделять неприятно пахнущие продукты, что привлекает внимание работающих, и горелку отставляют, но мебель остается поврежденной. Гораздо серьезнее случай, если на полке оказываются склянки с легко воспламеняющимися веществами, загорающимися при более низких температурах, чем дерево. Особенно опасно, если эти продукты жидкие или легко летучие, так как в этом случае пары разрывают банку уже при слабом нагревании, вспыхнувшее вещество разливается и загорание охватывает большую поверхность. [c.85]

    Исследуемое вещество атомизируют, распыляя его раствор в пламя газовой горелки. Через полученный пар обычно пропускают излучение, соответствующее атомному спектру определяемого элемента. В качестве источника излучения используют радиочастотные лампы. Световой поток, прошедший через поглощающий слой и монохроматор, выделяющий резонансную линию, регистрируют фотоэлектрически. В соответствии с законом Бугера мерой концентрации элемента служит поглощающая способность, которая зависит от строения атомов, агрегатного состояния вещества, его концентрации и температуры, толщины слоя, длины волны, поляризации падающего света и других факторов. По положению линий в спектре можно сделать вывод о строении атомов или идентифицировать их. Достоинствами метода являются высокая избирательность, низкие пределы обнаружения (10 —10 мкг/мл) и высокая воспроизводимость. [c.241]


    Выполнение. Внести молибденовую проволоку в пламя газовой горелки. После удаления проволоки из пламени хорошо виден белый дымок (черный фон ). Образуется окись молибдена, которая при высокой температуре испаряется без разложения. [c.206]

    Реакции окрашивания пламени. Пары некоторых металлов обладают определенной окраской, что может служить аналитическим признаком наличия в исследуемой смеси тех или иных металлов. Реакции окрашивания пламени обычно проводят с хлоридами как с наиболее летучими солями. При их проведении кончик платиновой проволочки, впаянной в стеклянную палочку, обмакивают в исследуемый раствор и вносят его в бесцветное пламя газовой горелки. Проволока должна быть предварительно очищена путем многократного смачивания соляной кислотой и последующего прокаливания до тех пор, пока она не перестанет окрашивать пламя. Следует избегать проведения реакции окрашивания пламени с твердыми веществами, так как это часто приводит к трудно устранимому загрязнению проволочки. Нельзя пользоваться холодным коптящим (восстановительным) пламенем, так как при этом образуется хрупкая углеродистая платина. При проведении реакций окрашивания пламени следует применять горелки, дающие высокую температуру (порядка 1500°), например бунзеновскую или горелку, питаемую газом из городской сети. Нужно помнить, что при работе с недостаточно горячим пламенем можно не обнаружить даже такой легко открываемый элемент, как натрий. Для более детального изучения реакций окрашивания пламени можно воспользоваться карманным спектроскопом. [c.21]

    Платиновые сосуды разрушаются при нагревании в них многих металлов, образующих с ней сплавы с низкими температурами плавления. В частности, нельзя нагревать в платиновых сосудах Н , РЬ, 5п, Аи, Си, 51, 2п, Сс1, Аз, А1, В1, Ре или, по крайней мере, не нагревать их до высоких температур. Эти металлы могут образовываться в результате действия на анализируемый материал различных восстановителей (фильтровальная бумага, обугленное органическое вещество, восстановительное пламя газовой горелки). [c.18]

    Метод газопламенного напыления заключается в том, что частицы порошка полимера, размером 0,1—0,23 мм пропускаются через пламя газовой горелки, в котором они расплавляются и затем в расплавленном состоянии оседают на металлическую поверхность, нагретую на 10—15° выше, чем температура нижней границы текучести полимера. Толщина покрытия зависит от длительности процесса напыления порошка на изделие. [c.297]

    Во время эксплуатации эмалированных аппаратов нельзя пользоваться железными черпаками, ломами, лопатами и т. п. Необходимо возможно чаще очищать аппарат от накипи и других загрязнений. Всегда надо помнить, что для эмалевого покрова опасны местные перегревы и резкие перепады температур поэтому нельзя направлять струю пара или пламя газовой горелки в одну точку аппарата или наполнять нагретый аппарат холодной водой. Нагревание незаполненного или частично заполненного жидкостью аппарата не допускается. [c.332]

    При газопламенном напылении струя воздуха с частицами полимерного порошка выбрасывается из сопла распылительного пистолета и проходит сквозь пламя газовой горелки, смонтированной вместе с пистолетом (рис. 15.2). Под действием тепла горелки порошок нагревается до температуры размягчения полимера, а на поверхности детали сплавляется, образуя сплошной слой толщиной 0,1—3 мм. Струя, выходящая из горелки, направляется перпендикулярно покрываемой поверхности, та1< как при этом достигается большая равномерность нанесенного слоя. Для лучшей адгезии покрытия поверхность изделия перед напылением прогревают горелкой. Недостаток способа — малая производительность, неравномерная толщина покрытия, большие потери порошка, коробление тонких изделий (листов) при их нагреве, невозможность напыления порошка на изделия большой толщины из-за трудности их прогрева. Метод удобен при проведении ремонтных работ, например при заделке раковин в металле, выравнивании сварных швов и т. д. [c.453]

    Когда окисление совершается при высокой температуре, т. е. когда происходит быстрое сгорание, частицы кислорода находятся большей частью в вполне диссоциированном состоянии, и потому окисление может давать непосредственно окиси. Но там, где температура почему-либо менее высока, группы —0—0— могут уцелеть и давать перекиси. Если направить пламя газовой горелки, водорода или окиси углерода в фарфоровую чашку, хорошо охлажденную и содержащую немного воды, последняя насыщается продуктом, который дает все реакции перекисей. [c.247]

    Испытание на окрашивание пламени. Очищенную платиновую или нихромовую проволоку, конец которой загнут в виде петли, окунуть в концентрированную НС1 и внести в бесцветное пламя газовой горелки. Затем проволоку окунуть в исследуемый раствор, внести ее в несветящее пламя горелки и наблюдать за окраской пламени. Характерная для катионов второй группы окраска пламени появляется не одновременно, так как их хлориды имеют разные температуры испарения. При нагревании солей катионов второй группы сначала появляется карминово- красная окраска стронция, затем желтовато-зеленая окраска бария. Есл в смеси находятся несколько ионов второй и первой групп, это испытание является ориентировочным и не дает точных результатов. Чувствительность испытания можно увеличить применением спектроскопа. [c.99]

    Газопламенное напыление. Это способ пневматического распыления порошков при одновременном их плавлении, которое достигается тем, что порошок при выходе из сопла распылителя проходит через пламя газовой горелки с температурой свыше 1500 С. За сотые доли секунды частицы порошка нагреваются [c.257]

    Выполнение. Внести молибденовую пров олоку в пламя газовой горелки. Вынуть ее из пламени и обратить внимание на белый дымок (черный фон ). Образуется оксид молибдена, который при высокой температуре испаряется без разложения. [c.177]

    Пламя газовой горелки Бунзена или Теклю имеет несколько температурных зон от 300 до 1540 С (рис. 113, в). В нижней части пламени от 300 до 520 С происходит неполное сгорание газа (восстановительная зона). В верхней части пламени достигается наиболее высокая температура (окислительная зона), и поэтому нафеваемый предмет не следует глубоко опускать в пламя горелки, нафсвать его надо в верхней трети пламени. Пламя горелки Меккера (рис. 113, б) имеет по всей своей высоте практически одну зону с температурой от 1640 до 1770 С. [c.218]

    Регулировка температуры. Для контроля за температурой в баню всегда вводят термометр (из металличс- ски.х и парафиновых бань его необ.ходимо удалять до. затвердевания расплава). Температуру можно поддерживать около некоторого значения, если ограничить подвод тепла к бане во времени, например регулируя пламя газовой горелки или подключив электронагреватель через трансформатор ил1г реостат. Однако таким методом трудно долгое время поддерживать постоянную температуру, так как необходимо контролировать постоянно количество подводимого тепла. [c.32]

    Форма пламени. Форма пламени, изображенная на рисунке 259, А ц В, является нормальной и принадлежит или спокойно горящей свече, спиртовой лампочке, или газовой горелке при среднем притоке воздуха. Изменяя приток воздуха, можно менять форму и свойства пламени. При слабом притоке воздуха пламя газовой горелки является коптящим, большим, в форме кисти и светящим по мере усиления притока воздуха (путем увеличения отверстия для его ввода) пламя уменьшается, заостряется, становится бесцветным и дает более высокую температуру, при чересчур сильном притоке пламя начинает гореть неспо- [c.347]

    Ход определения. Определение ориентнровониой температуры вспышки растворителя (этанола). Включив уст1)ОЙство, нагревают растворитель в тигле со скоростью 5—6 С/мин, контролируя ее секундомером. Через каждые 5 повышения температуры зажигают газовую горелку 4, при этом длина пламени строго регулируется от 4 до 5 мм. Пламя газовой горелки проносят от одной стороны тигля до другой в течение 1-2 с на расстоянии 13-15 мм от поверхности этанола, помещенного в тигле. Если иа юда-ется вспышка паров растворителя, нагревание прекращают и фиксируют показания термометра в момент появления вспышки паров этанола. Эту температуру принимают за ориентировочную температуру вспышки -Т рр. Если же вспышки не произошло, нагревание растворителя продолжают, повторяя испытание иа вспышку с помощью газовой горелки до тех пор, пока не будет отмечен момент вспышки растворителя и зафиксирована температура, которая принимается за ориентировочную температуру вспышки. [c.57]

    ДО 350°, можно, не боясь растрескивания, вносить в пламя газовой горелк№ или охлаждать до комнатной температуры. Большие толстостенные чаш№ гораздо чувствительнее к теплосменам, так что нагревать их следует с некоторой осторожностью. Большие чаши нельзя нагревать голым пламенем горелки или на проволочной сетке. Опасность растрескивания особенно велика, если сосуд нагревают электричеством. Наиболее опасно чересчур быстрое дювышение-температуры при нагревании печи, что следует иметь в виду при работе с такими чувствительными к этому материалами, как 2гОг. При высоких температурах, когда материалы делаются не столь хрупкими и уже обладают известной пластической деформируемостью, напряжения, которым они подвергаются, значительно меньше. [c.30]

    Аналитические реакции могут выполняться сухим или мок рым путем. В первом случае исследуемое вещество и соответствующие реактивы берут в твердом виде и для проведения реакции нагревают их до высокой температуры. Примером таких реакций могут служить известные из курса общей химии реакции окрашивания пламени солями некоторых металлов. Так, соли натрия при внесении их на платиновой проволочке в несветя-щееся пламя газовой горелки окрашивают его в яркожелтый цвет, соли калия — в фиолетовый цвет. При надлежащих условиях по этой окраске можно обнаружить присутствие указанных элементов в исследуемом веществе. [c.11]

    ПрТГправильном проведении опытов интенсивность свечения пламени возрастает в следующем порядке 1) пламя водорода, 2) несветящее пламя газовой смеси, 3) светящее пламя газовой горелки, 4) пламя свечи. В этом же порядке падает температура пламени. Нагретый до высокой температуры СаО излучает интенсивный свет, платина или графит светятся несколько слабее. [c.521]

    При определении ta n в аппарате ТВ-2 вначале пробу нагревают со скоростью 14—17 град/мин, затем интенсивность нагрева уменьшают из расчета повышения температуры в интервале последних 28 °С до ожидаемой 4сп со скоростью 5— 6 град/мин. Именно в этом интервале температур начинают определять fa n, перемещая пламя газовой горелки непрерывным движением над поверхностью пробы вещества в течение 1— 1,5 с. Такое испытание повторяют через каждые 2°С повышения температуры. [c.109]

    Пламя. Первым источником света, иримененным в спектральном анализе, было пламя газовой горелки. В этом пламени легко возбуждаются линии щелочных и щелочноземельных металлов, некоторые линии меди, железа и других элементов. В конце XIX и начале XX вв. пламя довольно широко использовалось для спектрального определения присутствия щелочных металлов. Б 20-х годах Лундегорд развил методику количественного спектрального анализа, используя пламя в качестве источника и фотоэлемент для регистрации и измерения интенсивностей аналитических линий. Однако впоследствии интерес к пламени упал, так как электрические дуги и искры, обладая более высокой температурой, оказались значительно более удобными источниками возбуждения. Однако большая стабильность пламени скоро снова привлекла внимание исследователей и за последние 10—15 лет количество аналитических работ, в которых для [c.32]

    Газопламенное напыление. Это способ пневматического распыления порошков при одновременном их плавлении, которое достигается тем, что порошок при выходе из сопла распылителя проходит через пламя газовой горелки с температурой свыше 1500 С. За сотые доли секунды частицы порошка нагреваются приблизительно до 120—150 °С, плавятся и в таком состоянии наносятся на покрываемую поверхность. Для снижения вязкости нанесенного материала, улучшения адгезии и внешнего вида покрытия поверхность нагревают той же газовой горелкой сначала до нанесения порошка, а потом после его нанесения. Способом газопламенного напыления с применением установок УГПЛ, УГПЛ-П, УПН-6 наносят разные порошковые композиции на трубы, химическое оборудование (мешалки, гальванические ванны, вентиляторы) и другие изделия с целью защиты их от коррозии. Толщина покрытий 0,5—3 мм. Недостатки способа — низкая производительность (3—4 м /ч) и невысокое качество покрытий из-за разложения полимеров в процессе нанесения. [c.265]

    Паяльная трубка (рис. 6) несколько сужена там, где она входит в пламя газовой горелки (свечи, спиртовки) через трубку непосредственно ртом (или резиновой грушей) подают воздух. В пламени паяльной трубки четко различаются окислительный и восстановительный конусы пламени, дающие температуру до 1000° С. Паяльной трубкой пользуются, чтобы получить сплавы различных металлов для анализа минералов и руд, а также для других качественных, так называемых иирохимических реакций. [c.15]

    Напомним, что при работе с газовыми горелками нужвю тщательно регулировать поступление в них воздуха. При избытке воздуха пламя может проскочить или погаснуть, а при его недостатке получается коптящее пламя с невысокой температурой. [c.150]


Смотреть страницы где упоминается термин Температура пламени газовых горелок: [c.224]    [c.16]    [c.167]    [c.38]    [c.149]    [c.155]    [c.202]    [c.23]    [c.138]    [c.202]   
Техника лабораторной работы в органической химии (1963) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Горелки

Горелки газовые

Пламена температура

Пламя газовой горелки



© 2025 chem21.info Реклама на сайте