Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральный метод сплавов

    Оборудование ЦЗЛ и ХАЛ зависит не только от средств, выделяемых на развитие аналитической службы, но и от типа технологического процесса, вида полупродуктов и готовой продукции. Основное оборудование — спектрографы, квантометры, хроматографы. В ряде производств используют также экстракционные, фотометрические, ионометрические, титриметрические методы и др. Так, на металлургических комбинатах, где полупродуктами и продуктами являются металлы и сплавы, до 75% анализов проводят спектральными методами на вакуумных и рентгеновских кванто-метрах и экспресс-анализаторах. [c.230]


    Спектральные методы определения алюминия нашли очень широкое применение при анализе металлов, сплавов и других материалов. Аналитические линии алюминия, используемые при спектральном. анализе, находятся в ультрафиолетовой области спектра. В табл. 13 приведены основные чувствительные линии алюминия. Наиболее чувствительные линии алюминия в дуге — линии с к = = 3961,531 3944,031 и 3082,161 А. Из них чаще всего пользуются линиями с X = 3082, 16 и 3961, 53 А. Самые чувствительные линии [c.147]

    В сплаве ЦАМ-4-3 алюминий определяют спектральным методом, используя кварцевый спектрограф средней дисперсии с трехлинзовой системой освещения щели ширина щели 0,025 жж, источник возбуждения генератор ИГ-2 (или ИГ-3), включенный по сложной схеме (С = 0,01 мкф, L = 0,01 мгн, один цуг за полу-период питающего тока). Второй электрод — угольный, заточенный на усеченный конус, или медный стержень, заточенный на плоскость. Межэлектродный промежуток 2,0 мм, предварительное обыскривание 60 сек. Аналитическая пара линий А1 2567,99 - Zn 2525,81 А. [c.157]

    Спектральный метод рекомендуется для определения калия в самых разнообразных материалах минералах и рудах [66, 68, 110, 400, 439, 440, 445, 448, 624, 740, 1477, 1817, 2539], силикатах, песке и стекле [88, 118, 212, 428, 461, 469, 1488, 2053, 2227, 2398], удобрениях [7, 388], металлах и сплавах [171, 2852], цементе и огнеупорах [222, 461, 1460, 1503, 1504, 1602, 2058], почве (96, 178, 372, 576, 81, 898, 1152, 1248, 1366, 1497], растительных материалах [156, 372, 576, 626, 1913, 2014, 2059, 2086, 2157, 2840], золе [402, 631, 1329, 1972, 2053, 2106, 2318, 2690], воде [201, 1307], пыли [2362, 2697], солях натрия [232, 399, 677, 2173], солях редких элементов [69, 141], биологических объектах [763, 829, 981, 1108, 1109, 1245, 1395, 1640, 2130, 2225, 2585], растворах солей [4, 402, 448, 574, 601, 1972, 2273, 2413], других объектах [172, 207, 1184, 2250, 2400, 2795]. [c.120]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]


    Эмиссионным спектральным методом ЗЬ можно легко обнаруживать не только в сплавах, минералах, рудах и других твердых материалах, но также и в газах. Описан [943] метод качественного и количественного определения ЗЬ одновременно с Аз, основанный на восстановлении их до гидридов, пропускании последних через злектрический разряд и регистрации излучения ЗЬ и Аз при 228,8 и 252,8 нм соответственно. [c.18]

    Для определения ЗЬ > 1-10 % в золоте и его сплавах наиболее часто используют спектральные методы без разложения пробы [389, 404, 754, 1095, 1386]. В соответствии с методом [196] пробу золота растворяют в царской водке и раствор наносят на торец угольного электрода. Метод позволяет определять ЗЬ > 1-10 % (8г = 0,06 0,13) и одновременно с ней еш е 22 примеси. Для определения ЗЬ, а также А1, Аз, В, Ое, Оа и Зп в золотых сплавах поступают следующем образом. [c.131]

    Для определения ЗЬ в меди, ее соединениях и сплавах наиболее часто используются спектральные методы (табл. 12). Экстракционно-фотометрическими методами с применением кристаллического фиолетового ЗЬ определяют в черновой меди [649], медных концентратах [190], медно-цинковых сплавах [685], оловянных бронзах [94], медно-никелевых сплавах [686] с применением метилового фиолетового — в конверторной меди [359], безоловянных бронзах [93] и с применением родамина С — в медных сплавах [1580]. Эти методы позволяют определять ЗЬ при ее содержании до [c.137]

    Для определения ЗЬ в олове наиболее часто используются спектральные методы [782, 812, 900, 1684]. При проведении анализа с возбуждением спектров в дуге постоянного тока в атмосфере Аг, при большой скорости испарения предел обнаружения ЗЬ составляет 5-10 % [1684]. Описано [812] определение ЗЬ с использованием литых и порошкообразных образцов. Наряду с ЗЬ метод предусматривает определение еще 22 элементов с пределом обнаружения 5-10 —1 10- %. При строгой стандартизации условий возбуждения спектров и режима обработки фотопластинок при использовании аналитической пары линий ЗЬ 252,852— Вп 245, 523 нм можно работать по твердому графику [5821. Описано [1495] определение ЗЬ > 1.10 % в олове и его соединениях с применением квантометра с возбуждением спектров как в низковольтной дуге (940 в), таки в высоковольтной искре (14000 в). Ряд спектральных методов предложен для определения 8Ь в различных сплавах, содержащих олово, в том числе в свинцово-оловянно-сурьмяных [1210] и антифрикционных [1494], а также в оло- [c.142]

    Для определения Sb в хроме, его сплавах и окислах предложен ряд спектральных методов. В одном из них [729] для определения Sh 5 в хроме используют фракционную дистилляцию  [c.153]

    Содержание рения в бинарных сплавах с иттрием, празеодимом и гадолинием определяют спектральным методом [378]. Предварительно сплав спекают с перекисью бария в течение 2 час. при 800—850° С. Спек измельчают и смешивают с соответствующими внутренними стандартами. [c.258]

    Полярографический метод оказался ценным в тех случаях, когда приходится определять примеси висмута и других металлов в свинце, меди, цинке, различных сплавах, а также в рудах названных металлов и некоторых минералах. Метод дает примерно такую же точность, как колориметрические и спектральные методы. [c.12]

    Спектральный анализ широко применяется для открытия и определения небольших количеств висмута, а также одновременно II других элементов в свинце, меди, олове, цинке, алюминии и их сплавах, сурьме, золоте, железе и стали, в некоторых рудах, минералах и горных породах, биологических материалах и других объектах. Чувствительность спектрального метода достигает 0,001% и меньше Bi, точность определения 5—10% при содержании от 0,1 до 0,001% Bi. [c.322]

    Наибольшее применение находят масс-спектральные методы с искровым источником, особенно для анализа чистых веществ и природных объектов [373, 512, 907]. Предел обнаружения хрома в алюминии и других чистых веществах 5-10 % [373]. Разработан метод анализа с искровым источником для силикатных материалов и сплавов [930]. Метод пригоден для определения 60—70 элементов для их определения выбирают наиболее чувствительные и не [c.98]

    Масс-спектральные методы применяют при определении хрома в алюминии [373, 640], реакторном натрии [607], железе высокой чистоты [893], меди [585], сталях [585, 629], сплавах [724, 930], фосфорной кислоте [667], геологических образцах [736, 795], лунных породах [518, 736, 795]. [c.99]

    Для определения мышьяка в меди и ее сплавах предложен спектральный метод [267]. [c.165]

    Определение бериллия спектральным методом в сталях возможно с несколько меньшей точностью, так как железо и другие компоненты дают весьма сложные спектры, особенно в присутствии Сг и Т1. Однако абсолютная ошибка определения бериллия не превышает 5—6% [474]. Область определяемых концентраций бериллия 0,01—2%- Пробы предварительно переводят в раствор. При анализе сплавов, содержащих Сг и N1, последние вводят в эталоны. Могут быть использованы следующие аналитические пары линий (в А)  [c.98]


    Бериллий входит в состав многих сплавов в качестве легирующей добавки. Для приготовления специальных сплавов используется основная часть бериллиевой продукции. Важнейшими сплавами бериллия являются сплавы на основе меди (бериллиевые бронзы). Содержание бериллия в бронзах может изменяться от долей процента до 2,5%, а в лигатурах —до 8%. Очень распространены алюминиевые и магниевые сплавы с присадками бериллия от 0,005 до 0,5%. Бериллий является также компонентом в сплавах с Fe, Ni, Со, Ti и входит в состав легированных сталей, например хромоникелевых и хромомолибденовых. Содержание бериллия в этих сплавах колеблется в широких пределах — от 0,001 % до нескольких процентов. Определение бериллия в сплавах производится, в зависимости от содержания, весовыми и колориметрическими методами после отделения основы и мешающих элементов или с введением маскирующих средств. Широко применяются спектральные методы анализа сплавов [442—473.  [c.173]

    Разработанная методика выделения и идентификации фуллеренов из структуры сплавов отрабатывалась на образцах из серого чугуна СЧ18. Выбран метод растворения стружки металла сильной кислотой с последуюш,ей экстракцией фуллеренов растворителем, основная трудность которого заключалась в подборе реагентов, способных разрушить матрицу железа, не разрушая при этом фуллерены. При использовании инфракрасной (ПК) спектрометрии было определено, что для спектральных методов исследования лучшее сочетание - плавиковая кислота (HF) и четыреххлористый углерод ( I4), которое и было использовано в дальнейшем для приготовления всех проб. [c.14]

    Спектральные методы предложены для определения таллия в кадмии [69, 101, 173, 795], цинке [794, 814], свинце [275, 477, 499, 829], олове [232, 355], в сплавах [888], пирите [498], цинковой об.манке [467], силикатах [157, 819, 820], рудах [121, 255, 266, 642, 888], почве [670], воздухе [36] и других объектах [8, 86а, 111а, 156, 284, 285, 293, 473, 486, 497, 553, 556, 565, 648, 741, 776, 889]. [c.124]

    Определение марганца в сплавах проводят фотометрическим [22, 244, 401, 630, 777, 1132, 1183, 1236, 1406], эмиссионно-, атомно-абсорбционными и спектрофотометрическими [806, 962, 1293, 1510], спектральными и химико-спектральиыми [82, 260, 333, 686], амперометрическими [200—203, 661, 1084, 14891, потенциометрическими [94, 584, 686], кулоиометрическими [312, 455], люминесцентным [1305], активационными [835, 1059, 1278], полярографическими [299, 368, 6891, рентгено-спектральньш флуоресцентным [1513], масс-спектральным методами [1229, 1516]. [c.159]

    Эмиссионный спектральный анализ в настоящее время является одним из наиболее широко используемых методов определения малых содержаний Sb в металлах и их сплавах, горных породах, рудах, веществах высокой чистоты, полупроводниковых и многих других материалах I227, 287, 314, 369, 380, 398, 442, 635, 637, 681—683, 807]. Теоретические основы эмиссионного спект-зального анализа изложены в ряде руководств и монографий 209, 226, 349, 709, 936]. Основными преимуществами эмиссионного спектрального анализа являются универсальность, высокая чувствительность и вполне удовлетворительная точность. Большая производительность и экономичность делают его незаменимым при массовых анализах однотипных проб, особенно с использованием современных приборов с фотоэлектрической регистрацией спектров [501, 710]. К числу достоинств спектрального метода следует также отнести в большинстве случаев малое количество вещества, необходимое для проведения анализа, составляющее иногда сотые доли грамма. [c.77]

    Для определения малых количеств Sb в алюминии рекомендован химико-спектральный метод [218], включающий экстракционное концентрирование определяемых примесей с применением диантипирилметана. Экстракт выпаривают на угольном порошке и спектрографируют. Высокой чувствительностью определения Sb (до 10 %, Sr 0,15) в алюминии характеризуется полярографический метод [131, 132], основанный па предварительном электролитическом концентрировании Sb на ртутном электроде с последующей анодной поляризацией электрода при непрерывно меняющемся до нуля потенциале. Для определения Sb в алюминии, и его сплавах предложен ряд вариантов активационного метода, включающих выделение Sb из облученного материала [848, 912, 945, 1235, 1247, 1376]. Методы характеризуются очень высокой чувствительностью (до 1-10 /6) и вполне удовлетворительной точностью (Sr 0,1). [c.124]

    При определении 8Ь > 6 10 % в железе, сталях и жаропрочных сплавах рекомендованы спектральные методы, основанные на фракционной дистилляции [176, 1278]. Описан также ряд других простых вариантов спектрального определения 8Ь в железе, чугуне и сталях [274. 1250, 1441, 1593], феррохроме, феррониобии, феррованадии, ферромолибдене и в жаростойких сплавах на основе железа [54, 793]. Метод испарения примесей с конденсацией на угольной капсюле, служащей в дальнейшем электродом, позволяет снизить предел обнаружения 8Ь в железе, сталях, чугуне и трехокиси железа до п-10 % [198]. Химикоспектральные методы определения 8Ь в железе и сталях, включающие концентрирование 8Ь соосаждением с Сн8 [336, 1274] или отделение Ре экстракцией диэтиловым эфиром [546], характеризуются примерно такой же чувствительностью, как и метод испарения. [c.129]

    Для определения ЗЬ в сплавах 1п—Аи—Са, 1п—ЗЬ—Аи—Са и РЬ—1н —В1—ЗЬ—Аи Са, используемых в полупроводниковых приборах, разработан спектральный метод с использованием проб в виде шариков (> 40 мк) или таблеток ( 1 = 40 мк, к = = 100 мк) [678]. Сурьму (а также Аи, Са, N1, Зп и В1) в микро-слитках многокомпонентных сплавов на основе индия определяют недеструктивным активационным методом [1271]. Используют 3—200 мпг анализируемого материала. Одновременно облучают 20—30 образцов потоком 1,2-10 тйтрон/см -сек в течение 20 час. Предел обнаружения ЗЬ при использовании сциитилля-ционных детекторов составляет 10 з, с применением Се (Ь1)-детекторов — 10 з. [c.132]

    В никеле и его сплавах Sb > 2-10- % определяют спектральным методом без предварительного отделепия [108]. В другом методе [486] предусмотрено два варианта определения Sb. По одному варианту анализируют металлические образцы (дуга переменного тока 7 —12 а, спектрограф ИСП-28 или ДФС-13) предел обнаружения Sb 1 -10- % (Sr = 0,1 -ь 0,2). По другому варианту пробу переводят в окислы спектры возбуждают дугой переменного тока 6а. При спектральном определении Sb 2,5-10 % в никелевых электролитах применено групповое концентриро- [c.141]

    Для определения Sb > I-I0 % в платине используют спектральный метод, позволяющий определять еще 18 других примесей [389а]. В сплавах платины с родием Sb (0,001—0,01%) определяют экстракционно-фотометрическим методом с применением родамина С после ее хроматографического отделения [482] или экстракции изопропиловым эфиром из 7,7 М HG1 [1648]. В продук- [c.143]

    В серебре и его сплавах ЗЬ определяют спектральными методами с использованием проб в виде стержней. Спектры возбуждают в дуге переменного тока (12 а) [390]. В другом варианте [391] спектры возбуждают в глобульной дуге. Ошибка определения в обоих случаях 10—20%. С использованием электродов из анализируемого материала сурьму определяют с использованием возбуждения спектров в конденсированной искре (8 0,05) [9091 или в дуге постоянного тока 8 а (5 0,15) [1598]. Определение ЗЬ (5 10 —2,5 10 3%, 3 0,11) и 14 других примесей в хлориде серебра выполняют следующим образом. [c.149]

    Для определения меньших содержаний Sb проводят предварительное ее концентрирование соосаждением с GuS. При содержании Sb 1. 10-2 -1 10 % Sr = 0,10- 0,19 [101]. Ряд спектральных методов [571, 777] предложен для определения Sb в окислах хрома. По одному методу [777] Sb 1 10- Sr 0,3) выделяют соосаждением с uS, осадок растворяют в смеси НС1 с HNO3 и анализируют в виде раствора. В случае анализа хромового ангидрида r(VI) предварительно восстанавливают до Сг(И1). В хроме и его сплавах Sb определяют также экстракционно-фотометрическим методом с применением метилового фиолетового [545]. [c.153]

    Сплавы на различных основах. Тройные сплавы Re—Мо—W анализируют так же, как и бинарные [986]. Рений определяют в сплавах, содержащих молибден, вольфрам и другие металлы, спектральным методом. Для устранения влияния основы угольный электрод подвергают специальной обработке, покрывая его торец Ag l [837]. Избыток Ag l позволяет установить содержание рения и других примесей по стандартным растворам чистых металлов. [c.257]

    Из других методов следует отметить пламенно-фотометрический, позволяющий определять с чувствительностью 5,6-10 % Си и 1,32-10 % А при 324,7 и 338,3 нм соответственно [1084]. Для определения Р1 и Р(1 в сплавах с золотом разработан рентгено-спектральный метод. Серебро в золоте чистоты 99,44—99,70% определяют рентгенофлуориметрическйи методом [1407]. [c.216]

    Уоринг и Аннелл [462] описали полуколичественный спектральный метод определения 68 элементов в минералах, горных породах и рудах. Анализируемый материал (10 мг) смешивают с 20 мг чистого графита. Продолжительность горения дуги постоянного тока 60—120 сек. Рядом со спектром анализируемого материала снимают спектр железа и алюминиевого сплава. Эталоны готовят из растворов с концентрацией каждого элемента от 10 до 10 %. Линии 68 элементов, используемые для полуколичественного определения, лежат в интервале 2250—4700 А. Чувствительность определения Ад, А1, Ва, Ве, Си,31,Мд, УЬ— 0,0001% Мо, Мп, В, Ш, Са, Зг, Зс, Ге, Ое, 1п, Т1, ,2г - 0,001% Аи, МЬ, N(1, №, РЬ, С(1, Р(1, Рг, Со, Р1, ВЬ, Ву, Ви, Ей, ЗЬ, Ег, Оа, Зп, Са, Зг, ТЬ, Но, Тш, Ьа, V, Ьи, Ъп — 0,01 % Аз, Ма, Оз, Р, Се, Ке, Зш, Та, НГ, Яg, Те, ТЬ, 1г, Т1, и, и, У-0,1 %. [c.211]

    Спектральный метод широко используется для определения мышьяка Б металлах, сплавах, рудах, горных породах, веществах высокой чистоты и многих других материалах [43, 131, 155, 227, 259, 354, 394—397, 405, 416, 446, 467, 1211]. Широкое применение эмиссионного спектрального анализа объясняется его универсальностью, сравнительной простотой, доступностью, высокой чув-С1Вительностью и малой продолжительностью. Большим преимуществом спектральных методов анализа является возможность одновременного определения большого числа элементов. [c.92]

    Спектральные методы используются для определения лплшьяка в сурьме [3, 385, 389, 390, 406, 630, 825], сульфиде сурьмы [825], германии [50, 244, 245, 353, 421, 1175], германиевых пленках [244, 245], неорганических соединениях германия и его кислотах [421], сере [98, 99, 142], селене [469], теллуре [77], молибденовом ангидриде [436], вольфраме и его соединениях [105, 1174], вольфрамовых минералах [729], продуктах цветной металлургии [40, 467], меди и ее сплавах [267, 998, 1161], продуктах медеплавильного производства [189], никеле и его сплавах [49, 454, 455, 1145], никелевых электролитах [32], свинце [297, 426, 350, 900], сульфиде свинца [306, 465], свинцовой пыли и продуктах ее нереработ- [c.97]

    Микропримеси элементов в серебре и его соединениях обычно определяют после предварительного отделения от основного компонента какими-либо химическими методами. Исключение составляет спектральный метод, при котором анализу подвергают непосредственно металлическое серебро, Ag I или AgNOз, полученный растворением образца и последующим выпариванием смеси раствора с графитовым порошком. Так поступают, например, при спектральном определении примесей Ге, РЬ, ЗЬ, Р(1, РЬ, Аи, В1, Си, Те и N1 в металлическом серебре [203, 450, 528, 599, 1587], примесей РЬ, В1, ЗЬ и Ге в сплавах серебра с медью [203, 204], примесей Си, В1, А1, 31, РЬ, С(1, Р(1 и Mg в нитрате серебра [12, 7921, примесей многих элементов в Ag l высокой чистоты [1260, 1425]. [c.215]

    Известно очень мало работ по определению неметаллов в нефтяных коксах спектральным методом Г 5-7 Л. С другой стороны, имеется значительное количество публикаций по опредедению указанных гетероатомов в сталях, сплавах С 8-18 Л.  [c.76]


Смотреть страницы где упоминается термин Спектральный метод сплавов: [c.281]    [c.383]    [c.209]    [c.234]    [c.132]    [c.154]    [c.258]    [c.290]    [c.155]    [c.168]    [c.190]    [c.209]   
Физико-химические методы анализа Изд4 (1964) -- [ c.226 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.226 ]




ПОИСК







© 2025 chem21.info Реклама на сайте