Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Арсеназо III, определение

    Массовая доля фтора определяется пиролитическим разложением фторидов алюминия паровоздушной смесью при 1000°С в кварцевом реакторе. Вьщеляющийся фтороводород частично взаимодействует с кварцем, превращаясь в тетрафторид кремния, который при растворении в воде переходит в кремнефтористоводородную кислоту. Содержание фтора в собранном дистилляте определяется фотометрически в виде комплекса с индикатором арсеназо-1. За результат анализа принимают среднее из двух параллельных определений, если расхождение между ними не превышает 0,1 от среднего значения. [c.77]


    Работа 1. Определение лантана с реагентом арсеназо III [c.77]

    Определение содержания La в растворе. К анализируемому раствору, содержащему РЗЭ, добавляют 12 мл 0,015%-ного раствора арсеназо III, 2,0 мл 0,08 М раствора хлорной кислоты и доводят объем раствора до 50 мл дистиллированной водой. Через 10 мин приготовленный раствор фотометрируют относительно раствора сравнения при выбранной длине волны. Измерения повторяют пять раз и, пользуясь градуировочным графиком, находят содержание лантана в анализируемом растворе. Методом наименьших квадратов находят доверительный интервал и стандартное отклонение результата определения. [c.80]

    Определение циркония. Для построения градуировочного графика готовят пять растворов, содержащих 0,01 0,02 0,03 0,05 и 0,07 мг Zr . В мерные колбы вместимостью 100 мл вводят пипеткой 1, 2, 3, 5, 7 мл стандартного раствора хлорида циркония, добавляют в каждую колбу 5 мл 0,5%-ного раствора желатины, 5 мл 0,02%-ного раствора арсеназо I, разбавляют до метки дистиллированной водой и тщательно перемешивают. В качестве раствора сравнения используют 25 мл 4M раствора НС1 и все реактивы, указанные выше, за исключением определяемого элемента, разбавленные до метки дистиллированной водой в мерной колбе вместимостью 100 мл. Измеряют оптическую плотность А растворов на фотоэлектроколориметре с желтым светофильтром (Хмакс = 580 нм), используя кюветы с тол- [c.234]

    Для определения содержания ионов 2г в анализируемой смеси из мерной колбы, содержащей элюат 2, отбирают 5 мл и переносят в мерную колбу вместимостью 100 мл. Прибавляют 5 мл 0,5%-ного раствора желатины, 5 мл 0,02%-ного раствора арсеназо I и доливают до метки дистиллированную воду. Раствор сравнения содержит 25 мл 4 Ai раствора НС1 и все предусмотренные методикой компоненты, за исключением определяемого элемента, добавленные в той же последовательности. Оптическую плотность раствора измеряют на фотоэлектроколориметре (Л,макс = 580 нм), толщина слоя кювет / = 50 мм. Пользуясь градуировочным графиком, определяют содержание циркония в исследуемом растворе. [c.235]

    Помимо описанных ранее (книги 1 и 2 Основы аналитической химии ) методов определения элементов из очень разбавленных растворов (1 10 ) можно привести в качестве нового примера предложенный Т. Г. Акимовой и О. П. Елисеевой метод концентрирования кюрия, количественно соосаждаемого в виде комплексных соединений с осадками, образованными реагентами арсеназо I, И и III в комбинации с кристаллическим фиолетовым. Этим методом можно отделять кюрий от Ю -кратных количеств магния. [c.23]


    Определение основано на использовании реагента арсеназо И1. Арсеназо III является высокочувствительным и селективным реагентом для фотометрического определения циркония. Окрашенный в красный цвет в кислой среде раствор арсеназо III при введении соли циркония быстро изменяет окраску на синюю или сине-фиолетовую в зависимости от соотношения реагента и циркония. Интенсивность окраски растворов соединения постоянна в интервале кислотности, соответствующей 1 — 3 н. растворам НС1, но сильно изменяется во времени. Для стабилизации окрашенного раствора вводят желатину. Для получения устойчивых результатов цирконий предварительно переводят в постоянную ионную форму (цирконил-пон) кипячением с 2 н. раствором НС1. Оптические плотности растворов соединения циркония с арсеназо III пропорциональны концентрациям в интервале 5—30 мкг циркония в 50 мл раствора. [c.375]

    Мешают определению ионы урана, тория, реагирующие с арсеназо III в кислой среде с образованием окрашенных соединений, а также фториды, фосфаты и оксалаты, образующие г рочные. комплексные соединения с цирконием и разрушающие окрашенное соединение циркония с арсеназо III. [c.375]

    Для определения очень малых количеств тория окрашенное соединение тория с арсеназо HI экстрагируют изоамиловым спиртом в присутствии хлорида дифенилгуанидиния и монохлоруксусной кислоты. Метод сочетает собственно определение тория с его экстракционным концентрированием и дает возможность определять торий при разбавлении 1 5 - 10 (0,02 мкг ТЬ/л л). [c.378]

    Арсеназо III образует с уранил-ионом комплексное соединение зеленого цвета с максимумом светопоглощения 655 нм. Чувствительность определения 0,01—0,02 мкг урана, коэффициент молярного поглощения г равен 75 500, Оптимальная область pH 1,7—2,5. Определению не мешают сульфаты, фториды, оксалаты, фосфаты. Из катионов мешают только торий, цирконий, алюминий, хром (III) и редкоземельные элементы, однако их можно замаскировать введением подходящих веществ (сульфосалициловая кислота в 0,05 н. хлористоводородной кислоте для алюминия, щавелевая кислота для циркония и гафния и т, д.). [c.378]

    Экстракционно-фотометрический вариант определения урана (VI) основан на способности соединения урана с арсеназо III экстрагироваться бутиловым спиртом из растворов, содержащих комплексон III и [c.378]

    А. Определение суммы редкоземельных элементов арсеназо III [c.212]

    Для определения редкоземельного элемента в испытуемом растворе, содержащем 5 мкг — 0,5 мг редкоземельного элемента и около 5 мкг тория и помещенном в мерную колбу емкостью 50 мл, прибавляют 5 мл арсеназо I, 1 мл соляной кислоты для создания pH 2 и доводят объем раствора до метки водой. После перемешивания отбирают пи- [c.214]

    Фотометрическое определение алюминия основано на образовании окрашенных соединений с алюминоном, ализарином (ализаринсульфонат натрия), арсеназо, эриохромцианином, гематоксилином, стильбазо и т. д. [c.241]

    Из азосоединений, предложенных для фотометрического определения алюминия, можно отметить также стильбазо и арсеназо I. Подробно см. в разделе Фотометрические методы . [c.28]

    Для фотометрического определения ниобия применяют также следующие реагенты пиридилазорезорцин (ПАР) [166, 592, 705, 1583, 1586], который при добавлении необходимого количества тартрата позволяет провести определение Nb в присутствии большого количества Та [166] ксиленоловый оранжевый [591, 971] арсеназо (определение Nb в Ti и Al) [1524] фенилфлуорон (после экстракции Nb с метилизобутилкетоном) [1116, 1951]. [c.352]

    На протекапие аналитической реакции значительное влияние оказывает состояние ионов лантана в растворе. В реакцию с арсеназо III вступает гидратированный ион лантана [La (Н2О) Согласно гипотезе аналогий эта реакция начинается примерно при тех же pH, при которых начинается гидролиз ионов лантана, т. е. в слабокислой среде (рН = 3). Ионы других элементов взаимодействуют с реагентом при другой кислотности раствора, поэтому изменяя ее можно в определенной степени управлять избирательностью реакции арсеназоIII. Например, арсеназоIII реагирует с ионами кальция в щелочной среде. В кислой среде эта реакция подавляется, поэтому можно определять лантан в присутствии кальция. Избирательность арсеназо III недостаточ- [c.78]

    М раствором НС1. Количественное определение указанных ионов фотометрическим методом основано на образовании хелатов Ti с хромотроповой кислотой при рН = 2—3 красного цвета (Ямакс = 470 нм), ионов Zr с арсеназо I при рН = 1 синего цвета (Лмакс = 580 нм). [c.233]

    Работа I. Определение арсеназо I голубого декстрана и нитрофенола в их смеси [c.240]

    Разделение красителя арсеназо (молекулярная масса 592,3) и нитрофенола (СеНбОзМ, молекулярная масса 139,1) на колонке с сефадексом 0-25 происходит вследствие различия нх молекулярных масс. Первым вымывается арсеназо , как имеющий большую молекулярную массу, а затем нитрофенол. Для определения внешнего объема колонки в смесь добавляют высокомолекулярный полисахарид голубой декстран, имеющий молекулярную массу до 2 млн. Голубой декстран вымывается из колонки во внешнем объеме. [c.240]


    Количественное определение голубого декстрана, арсеназо к нитрофенола проводят фотометрически по собственной окраске. [c.240]

    Определение голубого декстрана и арсеназо . Голубой декстран и арсеназо определяют по собственной окраске, на фотоэлектроколориметре. Содержимое пробирки (5 мл) переносят в кювету с толщиной слоя /=10 мм. Измерение оптической плотности (А) проводят на фотоэлектроколориметре с красным светофильтром (>. = 630 нм) для голубого декстрана и с зеленым светофильтром (Я.=540 нм) для арсеназо , используя в качестве раствора сравнения дистиллированную воду. [c.241]

    Разделение ионов Ti и Zr методом ионообменной хроматографии основано на различии в сорбции указанных ионов катионообменником КУ-2 в 1 М растворе НС1. При этом ионы Zт сорбируются катионообменником, а ионы Ti полностью-вымываются из колонки. Ионы Zr десорбируются из колонки A M раствором НС1. Количественное определение указанных ионов фотометрическим методом основано на образовании хелатов Ti с хромотроповой кислотой при рН = 2—3 красного цвета (Ямакс = 470 нм), ионов Zr с арсеназо I при рН=1 синего-цвета (Я, акс = 580 нм). [c.233]

    При помощи этого реагента можно определять торий в цирконе, ниобийсодержащих и других продуктах. Для определения микрограм-мовых количеств тория окрашенное соединение тория с арсеназо П1 экстрагируют органическим растворителем. [c.374]

    В качестве проявителей обычно используют групповые реагенты — иодид, хромат, гексациано-(П1)феррат калия, сульфид натрия, дитизон, ализарин-С, арсеназо и другие вещества, образующие с Определенными группами ионов окрашенные в различные цвета соединения. В некоторых случаях целесообразно применять смесь проявителей или обрабатывать осадочную хроматограмму последоватеяьно несколькими проявителями. [c.232]

    III. у большинства комплексных соединений редкоземельных элементов с данными реагентами в спектрах поглощения имеются два максимума (рис. 18, 59, 60), положение которых незначительно меняется в зависимости от структуры реагента (А 110—120 нм для реагента и комплекса). У некоторых ннтрозопроизводных АХ 170 нм. Имеются также комплексные соединения, в спектре которых есть только один максимум. Изучение [70] ряда аналогов арсеназо III показало, что наиболее чувствительным из этой группы реагентов является арсеназо М. Однако при анализе смеси на содержание отдельных редкоземельных элементов иногда более важна не абсолютная, а относительная чувствительность, т. е. возможность определения малых количеств отдельных элементов этой группы в их смеси. [c.212]

    Комплексные соединения редкоземельных элементов с арсеназо III образуются в интервале pH 2—4 и имеют два максимума поглощения при X 600 и 650 нм (см. рис. 59). При pH > 3 максимумы поглощения при этих же длинах волн имеет реагент. Для реагента оба эти максимума поглощения являются характерными, в то время как для комплексного соединения более характерен максимум поглощения при X 650 нм. Поэтому определение рекоземельных элементов арсеназо III проводят, измеряя оптическую плотность растворов, с pH 2,5—3 при X 650 нм. (В данном методе не рекомендуется использовать буферные растворы для создания необходимого значения pH, так как это снижает оптическую плотность растворов.) [c.212]

    Определение редкоземельных элементов в присутствии тория. Возможность последовательного титрования тория и редкоземельных элементов обусловлена тем, что торий образует с комплексоном III более устойчивое комплексное соединение, его соединение с арсеназо I образуется в кислой среде прп pH 2, а соединение редкоземельного элемента при pH 6,5. Соединения тория и редкоземельного элемента поглощают при одной и той же длине волны X 575 нм. Таким образом, имеется возможность провести последовательное титрование сначала тория при pH 2, а затем редкоземельного элемента при при pH 6,5. При этом добавления индикатора перед титрование редкоземельного элемента не требуется, так как индикатор регенерируется в процесе тирования тория. Однако этот метод дает хорошие результаты при титровании смесей, содержащих элементы при соотношении Th редкоземельный элемент =1 1 1 10 1 100. [c.214]

    Для определения циркония применяется ряд органических реагентов арсеназо (П1) (80), ксиленоловый оранжевый [81] и о, о - диоксиазосоединения [82]. Из последней группы соединений представляет интерес пикрамин-эпсилон. Прн использовании отдельных реагентов можно применить дифференциальный спектрофотометрический метод, позволяющий определять цирконий и гафний [83] в их смеси. Для определения циркония известен также ряд ме- 2 Распределение гидроксокомплек-тодов спектрофотометрического сов циркония [c.223]

    Реагент арсеназо III (см. стр. 212), предложенный С. Б. Саввиным 168] и успешно примененный для прямого спектрофотометрического определения циркония, может быть использован также и в методе спектрофотометрического титрования. Реагент максимально поглощает при А, 535 нм. У комплексного соединения циркония с арсеназо 111 имеются две полосы максимального поглощения при Я 620 и к 670 нм. Чувствительность и селективность метода увеличивается, если титрование проводить при К 670 нм и кислотности 6 н. по H IO4. [c.227]

    АРСЕНАЗО, орг. реагенты, получаемые азосочетанием хро-мотроповой к-ты с диазонием фениларсоновой к-ты и ее разл. замещенных. Применяют как реагенты для концентрирования, разделения (в частности, осаждением и экстракцией) и определения более 40 элементов. Наиб, важные из реагентов этой группы рассмотрены ниже. [c.202]

    Арсеназо М (3-[2-арсонофеиил)азо]-4,5-дигидрокси-6-(3-сульфофенил)азо]-2,7-нафталиндисульфокислота ф-ла V), мол. м. 732,49. Темно-красное в-во, хорошо раств. в воде, хуже-в этаноле и ацетоне. При pH 3 водных р-ров А. М 540 нм, р-ров комплексов с металлами 640 нм. Реагент применяют для фотометрич. определения La и общей суммы РЗЭ te 10 ), а также Си, Са, РЬ. Определению не мешает U. [c.203]


Смотреть страницы где упоминается термин Арсеназо III, определение: [c.204]    [c.215]    [c.56]    [c.202]    [c.281]    [c.505]    [c.203]   
Аналитическая химия циркония и гафния (1965) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Арсеназо



© 2025 chem21.info Реклама на сайте