Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрические методы определения ионов

    В косвенных фотометрических методах определения SO2 используются изменение окраски индикаторной бумаги, пропитанной раствором фенолового красного [4321 или метилового красного на поливинилхлориде [491], ослабление окраски астразон розового FG в присутствии SO [787], а также ингибирующее действие сульфитов на некоторые цветные реакции. В присутствии следовых количеств SO2 ускоряется образование тройного комплекса Ag(I) с 1,10-фенантролином и бромпирогалловым красным [165], Fe(III) восстанавливается до Fe(II), которое образует окрашенный комплекс с 1,10-фенантролином двойной [13361 или с участием ацетат-иона тройной [5511 аналогичный комплекс Fe(II) и СН3СОО дают с ферроцином [3-(2-пиридин-)-5,6-бис-(4-фенилсульфокис-лоты)-1,2,4-триазин[ [552[. [c.127]


    Аммонийные ионы и аммиак. Фотометрический метод определения с реактивом Несслера. [c.277]

    Существует много фотометрических методов определения циркония. При проведении реакций необ.ходимо всегда учитывать ионное состояние циркония (IV) в водных растворах, который благодаря высокому заряду и малому ионному радиусу легко гидролизуется и образует полимерные частицы. Для предотвращений этих процессов все реакции проводят в кислой среде. [c.489]

    Фотометрические методы определения хрома находят очень широкое применение при анализе сталей, горных пород и руд, содержащих < 0,01% Сг. Фотометрическое определение хрома проводят по светопоглощению его ионов и соединений с различными неорганическими и органическими реагентами. [c.41]

    Наиболее широко применяемые фотометрические методы определения железа основаны на реакциях с о-фенантролином, который образует с железом (II) комплексный ион, окрашенный в интенсивно-красный цвет с 2,2 -дипиридилом, дающим с железом (И) красновато-пурпурное окрашивание с салициловой кислотой, дающей с железом (III) в уксуснокислом растворе комплекс с аметисто-фиоле-товым окрашиванием с тиогликолевой (меркаптоуксусной) кислотой, дающей с железом (И) в щелочном растворе (pH 10) краснопурпурное окрашивание с сульфосалициловой кислотой, которая образуете железом (II и III) в аммиачном растворе соединение желтого цвета в кислых растворах сульфосалициловая кислота образует с железом (III) соединение красного цвета. [c.250]

    При анализе различных материалов самое широкое распространение получили методы определения рения, основанные на цветных реакциях с роданидом, тиомочевиной и а-фурилдиоксимоы. Основным недостатком этих методов является необходимость отделения молибдена. Следует отметить, что модификациям и усовершенствованию указанных методов посвящается большое количество публикаций. В результате найдены пути повышения избирательности методов и чувствительности. Особый интерес представляют методы определения рения в присутствии молибдена и других мешающих примесей. Так, например, определению рения с тиооксином и 6-хлор-8-меркаптохинолином не мешают 5000-и 3300-кратный избыток молибдена соответственно, а с дифенил-карбазидом — 5000-кратные (и более) количества вольфрама. Повышенная избирательность этих методов связана с экстракцией образующихся комплексов рения. Особого внимания заслуживают экстракционно-фотометрические методы определения рения по светопоглощению ионных ассоциатов Re04 с рядом красителей. Эти методы обладают высокой чувствительностью и позволяют определять рений в присутствии значительных количеств молибдена. [c.86]


    Фотометрические методы определения концентрации растворов основаны на сравнении поглощения или пропускания света стандартными и исследуемыми растворами. Степень поглощения света фотометрируемым раствором измеряют с помошью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать аликвотную часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определяемым ионом окрашенное соединение. Если добавляемый реагент и все остальные компоненты раствора сравнения бесцветны и, следовательно, не поглощают лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду. [c.204]

    Хлор В различных соединениях находится в степени окисления — 1, +1, +3, +5 и, +7. Прямых фотометрических методов определения ионов хлора нет, поэтому для их определения обычно применяют либо турбидиметрический (или нефелометрический) метод или пользуются косвенными фотометрическими методами, основанными на разрушении соединений, поглощающих свет. Во всех случаях ионы хлора необходимо предварительно отделять, особенно необходимо отделение от бромидов, иодидов и роданидов, которые всегда мешают определению ионов хлора. [c.307]

    Фотометрический метод. Определение основано на образовании фосфорномолибденовой гетерополикислоты желтого цвета с последующим восстановлением ее ионами Fe2+ в присутствии сульфита натрия до комплексного соединения синего цвета, интенсивность которого измеряют на фотоколориметре с красным светофильтром или на спектрофотометре при X = 660 нм по холостой пробе. [c.336]

    Из фотометрических методов определения содержания скандия широкое распространение получил метод определения с ксиленоловым оранжевым. Скандий образует прочное комплексное соединение состава 1 1 при pH 1,5— 5,0. Нижний предел определения равен 0,1 мкг/мл небольшие количества редкоземельных элементов определению не мешают ионы железа (III) и церия (IV) восстанавливают аскорбиновой кислотой. Мешают определению скандия торий, галлий, индий, цирконий. Кривые светопоглощения растворов ксиленолового оранжевого и его соединения со скандием показаны на рис. 23. С помощью ксиленолового оранжевого скандий определяют в металлическом магнии и его сплавах, в медных сплавах, в вольфрамите. [c.207]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    Между тем исследование разнолигандных комплексов привело к разработке прямых методов определения фтора с ализаринкомплексоном, арсеназоИ и другими реактивами. Таким образои(г, одним из перспективных направлений разработки фотометрических методов определения неметаллов, для которых нет цветных реакций, является исследование окрашенных разнолигандных комплексов с участием этих ионов. [c.300]

    Природные и промышленные материалы содержат рений от 10 до десятков процентов. В зависимости от содержания рения в анализируемых объектах для его определения используются весовые, титриметрические, электрохимические, спектрофотометрические, спектральные, флуоресцентные, рентгеноспектральные, радио-активационные, масс-спектрометрические и другие методы. Большое число публикаций относится к изучению взаимодействия рения с различными органическими реагентами и разработке спектрофотометрических и экстракционно-спектрофотометрических методов его определения. Такая тенденция вполне закономерна, если учесть большую склонность рения к комплексообразованию с различными реагентами, а также то, что фотометрические методы обладают высокой точностью и экспрессностью. Значительное развитие экстракционно-фотометрических методов определения рения, основанных на образовании ионных ассоциатов перренат-и гексахлороренат-ионов с красителями, связано с их высокой чувствительностью и избирательностью. Многие из этих методов позволяют определять рений в присутствии больших количеств молибдена — основного мешающего элемента. [c.73]


    Кинетический фотометрический метод определения 0,01 — 0,15 мкг мл тиосульфат-ионов основан на каталитическом ускорении иод-азидной реакции [1389[. Оптическую плотность раствора измеряют при 350 нм. Мешают Fe(III), u +, SO3 и N . [c.134]

    Шестивалентный молибден, находясь в форме фосфорномолибденовой кислоты, легко воостанавливается ионами двухвалентного железа с образованием молибденовой сини. Это было использовано для разработки фотометрического метода определения молибдена (стр. 226). Показана возможность [262, 264] фотометрического титрования солей фосфорномолибденовой кислоты раствором соли двухвалентного железа с образованием фосфорномолибденовой сини. Установлено, что при избытке фосфата образуются бесцветные соединения, которые не восстанавливаются до молибденовой сини. [c.95]

    Описан фотометрический метод определения молибдена с роданидом в присутствии серной кислоты, тиомочевины и ионов меди(П). Метод позволяет определять молибден без отделения рения [1324]. Чувствительность метода повышается (до 10 %Мо) нри экстракции роданидного комплекса молибдена(У) изоамиловым спиртом [1297, 1302]. Определение молибдена роданидным методом без отделения рения возможно в присутствии Hg(I) и H2SO4 [542, 1322]. [c.270]

    Экстракционно-фотометрические методы определения рения в виде ионных ассоциатов [c.121]

    В данном разделе описаны два фотометрических метода определения тантала, основанных на образовании желтого комплекса при взаимодействии ионов тантала с пирогаллолом в кислом растворе оксалата аммония . [c.151]

    Ниже (см. стр. 60) описан наиболее удобный фотометрический метод определения марганца в титане и его сплавах, в основу которого положена реакция образования перманганата при окислении ионов марганца (И) иодатом калия в кислом растворе [c.59]

    Метиловый зеленый. Разработан экстракционно-фотометрический метод определения Ке04 с метиловым зеленым [5191. Ионный ассоциат перрепат-иона с красителем при pH 2,7—5,2 практически полностью извлекается бензолом за двухкратную экстракцию. Из фосфорнокислых растворов сам краситель не экстрагируется. Максимум светоноглощения бензольных экстрактов соединения находится при 640 нм, 6340 = 109 000. Закон Бера соблюдается для экстрактов с концентрацией 2 мкг Ве. Определению рения не мешают до 600 мкг Мо и 60 мкг . [c.129]

    В книге описаны синтез, очистка и анализ гетероциклических азосоединений на основе аминов ряда пиррола, пиридина, антипирина, анабазина, хинолииа и других азотсодержащих гетероциклов. Освещены свойства реагентов—константы ионизации, спектры поглощения, приведены фотометрические методы определения ионов, обсуждено использование реагентов в физико-химнческих методах анализа. [c.4]

    Фотометрические методы. Взаимодействие сульфатов с солями (хроматом, молибдатом) и комплексными соединениями (хло-ранилатом, родизонатом и др.) бария лежит в основе давно используемых фотометрических методов определения S04 . Образование осадка BaS04 вызывает разрушение соли или комплекса бария и появление в растворе эквивалентного сульфатам количества свободного лиганда, окраску которого фотометрируют. Изменение окраски раствора при прямом титровании сульфатов солями бария в присутствии металлоиндикаторов на ион Ва + (нитхромазо, торона, ортанилового К и др.) используется для фотометрического установления точки эквивалентности. [c.130]

    Предложен фотометрический метод определения ртути в продуктах селенового производства и серной кислоте [158], основанный на обесцвечивании диэтилдитиокарбамината ртути в I4 без предварительного отделения ртути от других элементов, кроме серебра (которое осаждается хлорид-ионом и отфильтровывается с нерастворимым осадком после растворения пробы в азотной и серной кислотах). [c.153]

    Фотомь1рические методы широко применяются в аналитической хилши алюминия. Ион не обладает хромофорным действием, поэтому для определения алюминия используются исключительно окрашенные реагенты. Обзор фотометрических методов определения алюминия расс.мотрен в работах [360, 421]. [c.91]

    Фотометрические методы определения марганца основаны на измерении оптической плотности растворов, содержащих ион МпО , пирофосфатомарганцевую кислоту или комплексные соединения марганца с органическими реагентами. [c.54]

    Чэпмен и Прайс [856] определяли 0,012—0,26% Аи в оловянно-свинцовых припоях по окраске ионов Au lT. Золото отделяют на теллуре с помощью Sn la в присутствии винной кислоты. Тараян и сотр. [568] разработали экстракционно-фотометрический метод определения 0,9—1,5% Аи в шламах и кеках, содержащих Se и Те. Экстракт в диэтиловом эфире имеет два максимума светопоглощения при 225—230 и 315—325 НЛ1, 6320 = 1,5-10 . Для экстрактов соблюдается закон Бера при концентрации 0,8— 320 мкг/мл Аи. [c.140]

    Экстракционно-фотометрический метод определения серебра с дитизоном выполняется по методу одноцветной или смешанной окрасок. Устойчивость AgHDz к действию щелочей используется для удаления избытка реагента из органической фазы взбалтыванием с разбавленным раствором аммиака окрашенный органический раствор дитизоната фотометрируют по методу одноцветной окраски [869]. По методу смешанной окраски фотометрирование проводят при определенной длине волны, в максимуме поглощения дитизоната или свободного реактива [869]. Если в растворе присутствуют ионы меди, то вместо дитизона в качестве экстракционного реагента можно использовать дитизонат меди, так как последний прочнее, чем дитизонат серебра. Смешанная окраска в этом случае изменяется более резко, от фиолетовой до желтой. Этот способ не требует удаления ионов меди из анализируемого раствора. [c.108]

    Шестивалентный молибден в сильносолянокислом растворе восстанавливается ионами иода до пятивалентного состояния [825, 1050]. Молибденовая кис./70та в слабокислых растворах восстанавливается ионами иода до молибденовой сини [957] восстановление ускоряется в присутствии фосфорной, кремне-,, вой и германиевой кислот. Шестивалентный молибден практически не восстанавливается при рН 0,1 [315, 316]. На реакции восстановления ионами иода основано несколько вариантов титриметрического определения шестивалентного молибдена [587, 705—707, 746—748]. В настоящее время эти методы не имеют практического значения . Иодид калия применяется как восстановитель в некоторых вариантах роданидного фотометрического метода определения молибдена (см. стр. 209). [c.94]

    Многочисленные примеры экстракции золота в виде ионных ассоциатов с родаминовыми, трифенилметановыми, антипирино-выми и другими реагентами приведены в разделе Фотометрические методы определения , так как эти реагенты часто применяют в фотометрическом анализе. Ниже приведены примеры использования реагентов данного типа для выделения и концентрирования золота. [c.89]

    Известны фотометрические и экстракционно-фотометрические методы определения серебра в этих материалах посредством дитизона, и-диметиламинобензилиденроданина, в виде ионных ассо-циатов фенантролинового комплекса серебра с красителями, например с бромпирогаллоловым красным или бромидного комплекса серебра с бутилродамином. Рекомендуются также пробирные методы определения и весовые методы после осаждения хлорида серебра. [c.176]

    Косвенный фотометрический метод определения ЗО основан на разрушении в кислой среде комплекса Ва + с хлорфосфоназо III. Оптическую плотность реагента после введения в сульфатсодержащую пробу комплекса бария с хлорфосфоназо III измеряют при 645 нм. Определение 1—5 мкг 30 с ошибкой 3,7% возможно в присутствии фосфат- и арсенат-ионов. Метод применим для определения серы в продуктах переработки топлива [1483]. [c.131]

    Экстракционно-фотометрические методы определения мышьяка с применением основных красителей характеризуются очень высокой чувствительностью. Так, например, молярный коэффициент погашения ионного ассоциата, образуемого молибдоарсенатом [c.75]

    Определение серебра в теллуре. Фотометрический метод определения серебра в виде ионного ассоциата фенантролината серебра с пирогаллоловым красным заключается в следующем [7961. [c.186]

    В ряде случаев бромид-ионы определяют без изменения их состояния окисления. К этой группе относятся методы фотометрирования водных растворов монолигандных бромидных комплексов Pd(II) [112] или смешанных Hg-содержащих комплексов с Hg(I) [175] и Hg(II) [127], экстракционно-фотометрические методы определения бромидов в виде ионных ассоциатов [216, 341, 657] или ионных пар [728], а также турбидиметрический [419, 697, 715] и нефелометрический [697] методы определения бромидов в виде золя AgBr. По своему значению они уступают рассмотренным выше методам, основанным на предварительном окислении ионов Вг , и применяются сравнительно редко. Однако лучшие из них целесообразно кратко рассмотреть. [c.106]

    Фотометрические методы определения бромит-ионов не разрабатывались, но бромат-ионы можно анализировать несколькими способами. Как наиболее простые отметим методы, основаи- [c.109]

    Фотометрический метод определения фосфора в виде фосфорнованадиевомолибденового комплекса (ФВМК) имеет ряд преи-муш еств перед методом определения в виде желтого ФМК [23]. Тройные комплексы более прочны. Они устойчивы в более широком интервале pH. Реакция болое чувствительна, так как полоса поглош,ения тройного комплекса сдвигается сильнее к видимой части спектра. Реакция более избирательна, так как способность к образованию тройных соединений встречается у ограниченного числа элементов. На образование тройного комплекса требуется меньше реагента — молибдата, а следовательно, слабее зависимость от присутствия посторонних ионов, связываюш их молибдат. Тройные комплексы хуже извлекаются неполярными растворителями, что дает возможность отделить их от обычных ГПК. [c.51]

    Фотометрические методы определения ниобия основаны на реакции образования желтого комплексного соединения при взаимодействии ионов ниобия с пирогаллолом в щелочном растворе оксалата аммонкя . Первый Метод предназначен в основном для определения 2—7% ниобия в циркониевых сплавах. Если содержание ниобия превьш ает 7%, рекомендуется дифференциальный метод. Эти методы применимы также для определения содержания ниобия в т аиталониобиевых сплавах. [c.144]


Смотреть страницы где упоминается термин Фотометрические методы определения ионов: [c.58]    [c.108]    [c.124]    [c.140]    [c.116]    [c.67]    [c.189]    [c.149]    [c.104]    [c.101]   
Санитарно-химический контроль воздушной среды (1978) -- [ c.270 ]

Справочник по аналитической химии (1975) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Определение иония



© 2025 chem21.info Реклама на сайте