Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термопласты переработка

    Понятия о строении и способах получения полимерных соединений. Состав пластмасс, классификация и методы идентификации Методы испытания и свойства пластмасс Типизация пластмасс и способов переработки Прессматериалы, их состав и товарные формы Подготовка прессматериалов к переработке Основное оборудование для производства изделий из прессматериалов Прессформы и приспособления Способы и режимы прессования. Особенности переработки некоторых прессматериалов и брак Общие сведения о термопластах Переработка термопластов литьем под давлением. Отличительные особенности литья некоторых термопластов и брак Переработка термопластов экструзией Экструзия изделий на специализированных агрегатах. Технологические неполадки и брак Отличительные особенности переработки основных термопластов и области их применения Товарный сортамент, способы изготовления и области применения поделочных пластмасс Переработка поделочных пластмасс формованием с предварительным нагревом Механическая обработка пластмасс Соединение пластмасс сваркой и склеиванием Изготовление изделий из стеклопластиков Получение покрытий из пластмасс Организация производства и техника безопасности на предприятиях переработки пластмасс [c.4]


    В производстве ПКМ используются твердые и жидкие связующие. Приготовление связующего включает измельчение, отсев нужной фракции, сушку, добавление необходимых ингредиентов (отвердителей, пластификаторов, катализаторов), гомогенизацию смеси или приготовление раствора, эмульсии, а для термопластов - переработку в листовой или пленочный материал. [c.139]

    С т р е л ь ц о в К. Н., Переработка термопластов методами механопневмоформования, [c.91]

    Возможны следующие варианты повторной переработки термопластов переработка во вторичный грану-лят или готовые изделия регенерация исходных продуктов синтеза и возврат их в производство использование для получения композиционных материалов. [c.256]

    Фторопласты 3 и ЗМ перерабатывают обычными методами, принятыми для переработки других термопластов, переработка должна производиться в более строго контролируемых условиях по температуре, давлению и времени. [c.165]

    В блочных бутадиен-стирольных сополимерах явление разделения фаз, наоборот, используется для создания регулярной сеточной структуры без вулканизации каучуков. Таким образом получают эластичные термопласты, которые можно перерабатывать на оборудовании, предназначенном для переработки пластмасс. [c.58]

    Диаметры червяка D и отношение LID нормализованы. Диаметр червяка следует выбирать нз следующего параметрического ряда 20, 32, 45, 63, 90, 125, 160, 200, 250, 320, 400, 450, 500 мм. Отношение LID = 20 25 для типовых одночервячных универсальных прессов при переработке термопластов LID = 30 для специальных червячных прессов LID = 12ч-18 для литьевых [c.334]

    Червяки одночервячных машин выполняются обычно с постоянным шагом t и переменной глубиной нарезки h. Число заходов нарезки червяка при переработке термопластов t = 1 для резин 1=1 2. [c.335]

    ОДНОЧЕРВЯЧНЫЕ УНИВЕРСАЛЬНЫЕ ПРЕССЫ ДЛЯ ПЕРЕРАБОТКИ ТЕРМОПЛАСТОВ [c.339]

    У типовых червяков для переработки термопластов принят шаг нарезки t = D. [c.335]

    Глубина нарезки в зоне загрузки для переработки термопластов = (0,12+0,16) D для резин /г = (0,17+0,25) D. [c.335]

    Вначале вкратце обсудим некоторые геометрические соотношения, свойственные червякам. Двумя основными геометрическими параметрами, характеризующими червяк экструдера, являются диаметр D, замеренный по наружному размеру гребня, и осевая длина L или отношение длины к диаметру L/D. Обычно это отношение находится в пределах 24—26, хотя иногда бывают червяки с отношением длины к диаметру выше — до 40 или ниже — до 8. Последние обычно встречаются либо в экструдерах для переработки резины, либо в ранних моделях экструдеров для переработки термопластов. Диаметры червяков обычно находятся в диапазоне от 2 до 75 см, но могут быть ниже и выше. Червяк не может быть плотно вставлен в цилиндр из-за трения. Поэтому между гребнем червяка и внутренней поверхностью цилиндра диаметром Оь существует небольшой радиальный зазор б/, равный около 0,2—0,5 мм. Расплав полимера непрерывно течет по этому зазору, играя роль смазки. Диаметр червяка по краю гребня составляет D . = Оь — 26 , Длина одного полного витка гребня, измеренная вдоль оси червяка, называется шагом L . Большинство червяков одночервячных экструдеров является однозаходными с = D . Схема такого червяка представлена на рис. 10.12. Радиальное расстояние между поверхностью цилиндра и основанием червяка называется глубиной канала Я. Основным конструктивным параметром червяков является продольный профиль глубины винтового канала, т. е. Н (г), где z — расстояние. [c.321]


Таблица 12.3 Диапазон температур переработки термопластов Таблица 12.3 <a href="/info/1262738">Диапазон температур</a> переработки термопластов
    Вид термопласта Темпера- турный интервал переработки Вид получаемого изделии Температура переработки  [c.338]

    Для первого этапа, в случае применения типовых червяков 1 = В) при переработке термопластов предложена следующая методика расчета. [c.339]

    При литье под давлением пористых термопластов (в принципе этот процесс является разновидностью литья под давлением реакционноспособных систем) в находящийся в пластикаторе расплав полимера вводится газ [501 или перед переработкой гранулы или порошок полимера смешивают с порообразующим компонентом (обычно в виде тонкодисперсного порошка) [51 ]. В любом случае после попадания расплава в полость формы растворенный газ может выделиться из расплава, поскольку давление в форме, особенно на участке развития фронта, невелико. При этом образуется изделие с очень плотной поверхностной коркой и пористой сердцевиной, плотность которой составляет 20—50 % от плотности сплошного полимера. Благодаря образованию корки (затвердевший пристенный слой, как показано на рис. 14.9) на поверхности литьевого изделия образуется лишь незначительное число пор. Однако полного отсутствия пор достичь невозможно из-за низких давлений, характерных для фонтанного течения. Типичное распределение плотности в пористом литьевом изделии следующее около одной четверти полутолщины изделия составляет твердая поверхностная корка затем в направлении к середине плотность быстро уменьшается и достигает постоянного низкого значения в сердцевине изделия. [c.548]

    Каландрование обычно используют для формования пленки из термопластов с высокой вязкостью расплава. Этот процесс особенно удобен для переработки полимеров, склонных к термодеструкции или содержащих значительные количества твердых добавок. Такая возможность является следствием способности каландра транспортировать большие количества расплава при незначительном уровне диссипации механической энергии (по сравнению с экструзией). Толщина каландруемого изделия должна быть одинаковой в продольном и поперечном направлениях. Любые изменения зазора, возникающие вследствие неправильной геометрии зазора, обусловленной неверной установкой, температурным расширением или прогибом валка, приводят к поперечной разнотолщинности. [c.588]

    НЕКОТОРЫЕ ИТОГИ И ПЕРСПЕКТИВЫ ИССЛЕДОВАНИЯ НЕИЗОТЕРМИЧЕСКИХ ПРОЦЕССОВ ПЕРЕРАБОТКИ ТЕРМОПЛАСТОВ [c.96]

    Интенсификация процессов переработки термопластов и модернизация существующего оборудования, создание новых образцов оборудования приобретают в связи с этим решающее значение. [c.96]

    Выполненные за последние годы исследования неизотермических процессов переработки термопластов позволяют подвести некоторые итоги и наметить перспективы исследований в этой исключительно важной для техники области. [c.97]

    Исследования неизотермических процессов переработки нельзя считать самоцелью. Задачей этих исследований должны являться интенсификация процессов переработки, создание новых устройств теплоснабжения, оборудования для переработки термопластов и разработка методов расчета теплоэнергетических параметров оборудования. [c.97]

    Весьма перспективным и сравнительно новым направлением переработки пропилена является получение из него полипропилена. По сравнению с полиэтиленом полипропилен имеет более высокие температуру плавления, механическую прочность и сопротивление разрыву. Он используется для изготовления прозрачных пленок и синтетических волокон, имеющих такую же прочность, как найлон. Фирма Монтекатини изготовляет из полипропилена теплостойкий (до 150°) термопласт моплен, который обладает хорошим сопротивлением действию кислот и масел. [c.77]

    Математическая модель любого неизотермического процесса переработки термопластов может быть записана в виде уравнений неразрывности, движения, энергии и состояния  [c.97]

    В результате проведенных нами теоретических и экспериментальных исследований получены соответствующие дифференциальные уравнения и алгоритмы их решения для неизотермических процессов переработки термопластов на валковых, червячных и дисковых машинах, а также при течении расплавов полимеров в каналах различной формы. [c.99]

    При помощи подобных уравнений может быть определен допустимый температурный уровень переработки термопластов или, фактически, пределы интенсификации процессов переработки, когда процессом можно еще управлять за счет внешнего теплообмена. [c.103]

    Реализация теплового удара в данном случае способствует замене внешнего трения гранул внутренним сдвигом. При этом возникают интересные теоретические задачи исследование неизотермического процесса плавления с учетом градиента давления в зонах действия энергетического парадокса , а также разработка и решение математической модели неизотермического напорного течения расплава полимера в дисковой части комбинированных экструдеров, где действует не только градиент давления, развиваемый червяком, но и нормальные напряжения в дисковом рабочем зазоре. Ожидает своего решения также неизотермический процесс плавления и образования расплава в чисто дисковых экструдерах, хотя нам и представляются более перспективными комбинированные экструдеры, которые могут обеспечить стабильный режим переработки термопластов. [c.107]


    Значительный интерес сточки зрения автоматического управления представляет, по нашему мнению, управление тепловым режимом переработки термопластов по каналу температура — состояние сдвига. Этот канал по сравнению с внешним воздействием на полимер несравненно менее инерционен и даст в будущем возможность более точного поддержания температурного режима переработки. Это в свою очередь должно вызвать соответствующие конструктивные изменения в оборудовании для переработки, обеспечивающие возможность воздействия по этому каналу. Это, конечно, не исключает установления связи между диссипативными процессами и внешними системами теплоснабжения. [c.107]

    Помимо описанных выше основных методов переработки применяется газопламенное и вихревое напыление порошкообразного полипропилена. Техника этих процессов та же, что и при напылении других термопластов. Для лучшего сцепления с металлической основой наносят одно или несколько грунтовых покрытий, для которых можно применять атактический полипропилен или полипропилен с низкой степенью изотактичности. [c.228]

    Рекомендации по конструкции шнеков для переработки расплавов полисульфонов по существу не отличаются от рекомендаций по конструкции шнеков для переработки других вязких аморфных термопластов. Переработку полисульфонов можно осуществлять без заметных осложнений на обычных экструдерах однако для них [c.74]

    Для серийного производства мелких деталей оказались незаменимыми уретановые термоэластопласты вследствие возможности переработки их современными скоростными методами литья под давлением или экструзией на оборудовании промышленности пластмасс. Таким способом перерабатываются высокомодульные эластомеры, используемые в качестве конструкционных материалов. К изделиям из них относятся детали для авхомобилей (твердость по Шору А 85—95) сферические подшипники рычагов переключения скоростей, подшипники рулевой колонки, шайбы под концевые подшипники. Термоэластопласты с высокой твердостью пригодны также для уплотнения пневматических и гидравлических устройств, изготовления бесшумных шестерен, сильфонов, деталей низа обуви. Термопласты с молекулярной массой менее 20 000 растворимы и применяются для изготовления клеев, которые обладают уникальным свойством — прочно склеивать любые виды натуральной и искусственной кожи. [c.548]

    Пластмассы благодаря своим высоким физико-механическим свойствам широко применяются в различных отраслях народного хозяйства. Производство их увеличивается, обгоняя но темпам роста производство продукции ряда других ведущих отраслей. Сейчас уделяется много внимания разработке новых материалов и совершенствованию процессов получения уже известных. Успешно развивается производство армированных пластиков и пенонластов, большое место отводится пластмассовым покрытиям, В связи с этим расширились возможности переработки пластмасс, появилось множество специальных машин для формования изделий новыми методами. Литье иод давлением и экструзия применяются теперь не только в переработке термопластов, но также при производстве изделий из наполненных термопластов, реактопла-стов и иенопластов, [c.166]

    Оборудование для переработки термопластов обновляется значительно быстрее. Для 92% выдувных машин, 75% термоформовочных и 60% экструзионных и литьевых машин срок службы составляет менее 5 лет. Следует отметить, что парк машин для переработки тер- [c.167]

    По отношению к нагреванию ПлМ подразделяются на термопластичные или термопласты, полимерная фаза которых при горячем формовании изделия не отверждается и ПлМ сохраняет способность переходить вновь в вязкотекучее состояние при повторном нагреве, и термореактивные или реактоп-ласты, переработка которых в изделия сопровождается реакциями образования трехмерной структуры в полимерной фазе (отверждение полимера) и изделие необратимо теряет способность переходить в вязкотекучее состояние. [c.386]

    В последние годы в работах [38—44] изучалась экструзия твердых термопластов, требующая очень высокого давления (до 0,5 ГПа), температур 30—250°С и приспособления для вытяжки при продавливании. В случае ПЭ такая переработка давала высокопрочный, теплостойкий материал с гексагональной симметрией, обладающий высоким значением вытяжки цепи. Как и в случае кристаллов с выпрямленными цепями, наблюдавшимися, например, Андерсоном [45] в разрушенных поверхностях ПЭ с низкой молекулярной массой, этот термин в настоящее время также используют применительно к ПЭ, кристаллизующемуся под давлением. Уикс и Портер нашли, что высокоориентированные нити подобного материала (ТИ , = = 58 ООО) имеют при комнатной температуре необычно высокую жесткость (70 ГПа), сравнимую с жесткостью минеральных стекол [40]. Кроме того о хорошей прочности при растяжении (500 МПа) дополнительно сообщается в работе [41]. Для ПЭВП с очень большой молекулярной массой (Ai = (2—3) X [c.34]

    После того как обработка расплава полимера заканчивается получением изделия заданной формы, возникает проблема отверждения, противоположная проблеме плавления. Методы решения уравнений теплопроводности, описанные в этой главе, применительно к плавлению, справедливы и для отверждения. Специальные вопросы отверждения рассматриваются в главах, посвященных формованию. Стадия плавления прежде всего касается переработки термопластов (за исключением холодного формования термопластов). Однако некоторые выводы, сделанные в этой главе, относятся и к переработке термореактивных полимеров, отверждающихся при нагревании вследствие образования поперечных связей. В этом случае нагрев осуществляется как за счет теплопроводности, так и за счет тепла, выделяющегося вследствие химической реакции отверждения. [c.251]

    Реализация указанных задач выполняется при помощи ЭЦВМ. При этом нами разработан и осуществлен следующий общий метод решения математической модели (2)—(5) для ряда конкретных задач получение функции диссипации, решение уравнения энергии с учетом полученного вида функции диссипации, т. е. определение температурного поля в первом и втором приближениях и затем интегрирование функции диссипации (при известном температурном поле) по всему рабочему объему машины с целью определения мощности диссипации ( дисс (1), а затем и мощности привода. В этом случае энергосиловые параметры оборудования определяются с учетом неизо-термичности процессов переработки термопластов. При этом температурное поле позволяет не только корректно решить уравнение теплового и энергетического баланса, но и обеспечивает технологически допустимый уровень переработки. [c.98]

    Реологические характеристики расплавов полимеров важно знать при выборе режимов переработки термопластов. Определение индекса расплава, однако, не дает полной картины поведения расплава полимера. Зависимость между индексом расплава и характеристической вязкостью полипропилена представлена на рис. 5.21. В последнее время индекс расплава принято определять при230° С [c.117]


Библиография для Термопласты переработка: [c.305]   
Смотреть страницы где упоминается термин Термопласты переработка: [c.47]    [c.334]    [c.335]    [c.363]    [c.179]    [c.182]    [c.182]    [c.6]    [c.35]    [c.106]    [c.569]    [c.691]   
Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Технология переработки пластических масс (1988) -- [ c.45 ]




ПОИСК







© 2025 chem21.info Реклама на сайте