Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внешней стабилизации система

    Внешняя стабилизация — использование системы, в которой опорный сигнал дает вещество, находящееся физически вне ампулы с образцом. Обычно ампула с этим веществом встраивается в датчик. [c.440]

    У атомов элементов, стоящих в периодической системе в непосредственной близости к инертным газам, то есть в начале периода после инертного газа или в конце периода перед инертным газом, либо внешняя устойчивая электронная оболочка не заполнена, либо начинается нo iый электронный слой. Такие атомы легко теряют или приобретают электроны, превращаясь при этом в положительно или отрицательно заряженные ионы, что приводит к стабилизации системы. [c.17]


    Таким образом, при достижении определенной величины 5 -заряда на карбониевом центре катионов рассматриваемой серии происходит изменение характера активированного комплекса процесса образования триарилкарбинолов в результате перераспределения вкладов внутренней и внешней стабилизации реагирующей системы в переходном состоянии. [c.67]

    На формирование пламен оказывают влияние следующие факторы химический состав горючего и окислителя начальные и физические состояния реагентов внд сжигания внешние силы, воздействующие на пламена методы стабилизации пламен элементы печной системы технические приемы и т. д. [c.64]

    Из коллоидной химии известно, что любая дисперсная система обладает агрегативной и кинетической устойчивостью, которые, в свою очередь, зависят от наличия факторов стабилизации и дестабилизации дисперсной системы. Наличие и действие указанных факторов определяется физикохимическими и электрокинетическими свойствами компонентов, входящих в дисперсную систему. Таким образом, целесообразно предварительно рассмотреть современное состояние и основные положения теории устойчивости коллоидных систем с жидкой дисперсионной средой во внешних электрических полях. [c.6]

    Стабилизация существенно зависит как от силы закрепления молекул стабилизатора на поверхности частиц дисперсной фазы, так и от степени ее заполнения. Увеличение того и другого параметра повышает устойчивость системы. Избыток стабилизатора мол<ет привести к формированию второго слоя молекул стабилизатора, ориентированного противоположным образом, что будет снижать устойчивость системы. При слабом закреплении стабилизатора возможна большая подвижность его молекул. При сближении частиц, если время их контакта соизмеримо со временем нахождения молекул стабилизатора на поверхности частиц, возможна агрегация, причем молекулы ПАВ могут даже способствовать агрегации, переходя на внешнюю поверхность агрегата. Молекулы ВМС, как правило, очень сильно закрепляются на поверхности частиц и при достаточном заполнении поверхности ВМС являются надежными стабилизаторами. При недостаточном количестве введенного стабилизатора устойчивость дисперсной системы может даже снизиться. Отдельные ветви одной макромолекулы могут сорбироваться на разных частицах, что способствует их флокуляции. [c.339]

    В динамической системе эффекты Марангони и Гиббса способствуют временной стабилизации жидкой пленки, так как в любой точке, где за счет внешних сил пленка утончается до предела, возникает местное увеличение поверхностного натяжения, противодействующее утончению. Градиент поверхностного натяжения проявляется не только в поверхностном монослое, но и в части близлежащей жидкости вследствие действия сил вязкости. Согласно этому механизму, названному поверхностным переходом, возможна стабилизация любых потенциальных точек разрыва. Наоборот, на утолщенной поверхности происходит падение местного натяжения, что [c.87]


    Когда между частичками дисперсной фазы и дисперсионной средой нет значительного взаимодействия (система лиофобна), сближение частичек происходит подобно сближению в вакууме. Расклинивающее давление равно нулю до расстояний Ю"" см, затем оно становится отрицательной величиной, т. е. фактором коагуляции. Чем выше лио-фильность системы, тем выше положительное расклинивающее давление или толщина сольватных оболочек, уравновешивающих своим расклинивающим давлением постоянную внешнюю силу, стремящуюся сблизить частички, и тем выше устойчивость системы. Поэтому стабилизация лиофобных дисперсных систем основана на лиофилизации поверхности частичек дисперсной фазы. Такая лиофилизация осуществляется либо созданием адсорбционного слоя ориентированных молекул поверхностно-активного вещества, изменяющего природу поверхности дисперсных частичек, либо адсорбцией ионов и созданием двойного электрического слоя на поверхности раздела фаз. Двойной электрический слой ионов при достаточно малой концентрации электролита в дисперсионной среде всегда размыт и образует вокруг коллоидной частички гидратную оболочку значительной толщины. Эта оболочка проявляет положительное расклинивающее давление, обусловленное электростатическими силами. [c.89]

    Рассмотрены аспекты стабилизации хаотического поведения динамических систем с помощью создания в изучаемой системе устойчивых периодических колебаний посредством внешнего воздействия. Существуют различные подходы к теории управления хаотическими колебаниями, в которых стабилизация может быть осуществлена двумя различными способами. [c.31]

    Гидроприводы летательных аппаратов приводят в движение рабочие органы систем управления и энергоснабжения. К рабочим органам систем управления относятся элероны, рули направления и высоты, механизмы поворота крыльев, к системе энергоснабжения — гидроприводы стабилизации скорости электрических генераторов, приводы воздухозаборников, регулирующих подачу воздуха в авиационные двигатели. В качестве примера на рис. 2 показана упрощенная схема [П]. Пилот воздействует на педали 1 и рычаги 2 гидромеханической системы управления рулями направления и высоты самолета. Это воздействие механической проводкой 3 передается на входы следящих гидроприводов 4 я 6, которые выполняют повороты руля направления 5 и руля высоты 7. Следящие гидроприводы преодолевают внешнее воздействие потока воздуха на рулевые поверхности и обеспе- [c.5]

    Одним из необходимых условий эффективной работы ЭХГ является стабилизация таких параметров, как давление, перепад или равенство давлений топлива и окислителя и перепад давления между реагентами и электролитом (в случае жидкого электролита). Выполнение этого требования в условиях нестационарных нагрузок и других внешних возмущений может обеспечить лишь автоматическая система управления. [c.234]

    Система предназначена для обеспечения оптимальных условий работы ТЭ (стабилизации внешних пара- [c.277]

    Основное назначение системы управления—обеспечение заданной точности стабилизации при наличии внутренних и внешних возмущающих воздействий. [c.280]

    Наиболее широкое применение нашел метод изоэлектрической фокусировки. Он основан на создании под действием внешнего электрического поля стабильного градиента pH, причем значение pH возрастает от анода к катоду. В такой системе каждый белок перемещает в том или ином направлении в соответствии со знаком своего заряда до тех пор, пока не достигнет участка, в котором значение pH совпадает с его изоэлектрической точкой. На этом участке дальнейшее его перемещение под действием электрического поля прекращается, так как его заряд становится равным нулю. Приложенное поле, поддерживающее стабильный градиент pH, препятствует также диффузному размыванию зоны. Механизм аналогичен только что рассмотренному эффекту градиента плотности раствора сахарозы на стабилизацию зон при седиментации. Действительно, если в результате диффузии белок уходит из участка, на котором pH = р1, в сторону катода, он попадает в область более высоких значений pH и заряжается отрицательно. Под [c.243]

    Если же внешние условия недостаточно устойчивы,, для стабилизации подаваемого на переработку потока применяют системы автоматического регулирования расхода (а иногда и давления), воздействующие на органы регулирования Производительности машины. [c.76]

    Примерами последней ситуации являются горение углерода и гетерогенное разложение перекиси водорода на пористом активном катализаторе [110, 299, 351]. В этих случаях, например, мгновенное возмущение в условиях, близких к метастабильной точке, может вызвать как повышение, так и понижение температуры поверхности. В первом слзгчае система приходит в установившееся состояние, соответствующее определяющей роли массопереноса через ламинарную пленку у внешней поверхности гранулы. Во втором случае стабилизация наступает при определяющей роли поверхностной реакции. [c.165]


    При рассмотрении эмульсионных систем обычно приходится прибегать к различным моделям. Так, например, тип эмульсии, образуемой при смешивании соответствующих компонентов, можно довольно надежно определить, проанализировав межфазные натяжения в исследуемой системе. Банкрофт [12] и Клаус [13] предполагают, что пленка поверхностно-активного вещества, стабилизирующего эмульсию, по своей природе является дуплексной и, таким образом, натяжение внутренней и внешней поверхностей пленки различно. Следовательно, тип образуемой эмульсии (В/М или М/В) должен быть таким, чтобы внутренняя поверхность характеризовалась высоким межфазным натяжением. Так, натриевые соли жирных кислот и аналогичные соли других щелочных металлов должны способствовать стабилизации эмульсий типа М/В. Это объясняется тем, что такие соли больше растворимы в воде, чем в масле, и поэтому межфазное натяжение на границе пленка— вода должно быть ниже, чем на границе пленка — масло. И наоборот, нри введении в систему таких поверхностно-активных веществ, которые более растворимы в масле, а не в воде, должны стабилизоваться эмульсии типа В/М, что действительно наблюдается на практике. [c.393]

    Куб этой копонны схематично показан на рис. 5.30 и отличается от описанных выше тем, что пар из парогенератора вводят по трубке, введенной вверху куба и имеющей на конце барбртер. Это потребовало ввести две системы стабилизации уровня жидкости во внутренней камере А [84], где подается водяной пар и испаряется флегма, и во внешней камере Б, где остаток ректификации выводится из куба. Оба стабилизатора уровня гидростатические, работают по принципу сообщающихся сосудов. Стабильность и надежность работы такого куба с вводом водяного пара подтверждена длительной его эксплуатацией. [c.138]

    Представленная схема является вариантом системы автоматического регулирования (САР), работающей по сигналу ошибки X ((), стремясь своими действими компенсировать влияние внешних возмущений. Число звеньев САР может быть уменьшено, а некоторые звенья совмещены (например, чувствительный элемент, задающее устройство и сравнивающий элемент в системе стабилизации давления). [c.280]

    Надмолекулярные струкауры в нефтяной системе являются дозародышевыми об разованиями, и если созданы соответствующие внешние условия для их роста и стабилизации, то из надмолекулярных структур формируются частицы дисперсной фазы. В этих случаях нефтяная система превращается в типичную дисперсную систему со многими присущими ей свойствами. [c.55]

    ЯМР-спектрометры снабжают также системой спиновой стабилизации. В таких системах используют сигнал ЯМР от дополнительного образца (например, воды), расположенного в датчике между полюсами магнита (внешняя протонная стабилизация), Приемник, регистрирующий сигнал ПМР этого образца, связан со специальной катушкой, помещенной в межполюсном зазоре. При отклонении магнитнот о поля от условий резонанса (например, из-за случайного изменения величины напряженности в момент резонанса) специальная система посылает в эту катушку ток до тех пор, пока условия резонанса вспомогательного образца не восстановятся. [c.45]

    Продемонстрируем метод на наиболее симметричных конфигурациях и простейших системах. Рассмотрим сушность эффекта расщепления терма. В качестве центрального иона возьмем ион переходного металла, внешняя оболочка которого содержит один -электрон, терм /). В свободном ионе -состояние вырождено пятикратно, т. е. имеется пять /-орбиталей, эквивалентных по энергии, на которых может находиться рассматриваемый э.тектрон (см. 7). Если поместить ион в центр поля лигандов, имеющего сферическую симметрию, энергия внешних электронов иона повысится из-за дополнительного отталкивания от отрицательных лигандов, создающих цоле, но в поле любой другой симметрии вдобавок произойдет расщепление -уровня на подуровни. Последнее зависит от симметрии поля. В октаэдрическом поле шести отрицательных лигандов (симметрия Он) две из пяти -орбиталей направлены в сторону расположения лигандов, именно -орбитали (рис. 100). Отталкивание электронов на этих орбиталях от отрицательных лигандов значительнее, чем на трех оставшихся орбиталях (1 у, ,.. и ,, лепестки которых направлены к ребрам октаэдра, т. е. между лигандами. Поэтому энергия электрона на первых двух орбиталях оказывается вьипе, чем на трех последних. Таким образом, первоначальный -уровень ( О терм) расщепляется на два подуровня — более низкий,трижды вырожденный, и более высокий, дважды вырожденный (е ). При заполнении электронами более низких уровней (здесь г ) система стабилизируется по сравнению с произвольным заполнением -орбиталей. Достигаемый за счет этого выигрыш энергии, называемый энергией стабилизации кристаллическим полем (ЭСКП), упрочняет химическую связь. [c.238]

    В гидромуфтах постоянного заполнения (рис. 5-15 и 5-21) возможность охлаждения рабочей жидкости с помощью внешней системы циркуляции, описанной выше, отсутствует. Поэтому затруднена и возможность измерения температуры жидкости в процессе работы. Стабилизация температуры в таких гидромуфтах происходит в результате отвода тепла путем естественного обдува. При работе на малых значениях I в них выделяется много тепла и тепловой баланс при естественном обдуве корпуса стремится установиться при высокой температуре, не допустимой для масла и подвижных соединений. Поэтому длительная работа таких гидромуфт при малых значениях I и особенно при / = О не допустима. При испытании в этой зоне характеристики, тидромуфту периодически охлаждают, переводя установку на режим работы I —> 1, т. е. снимая нагрузку с тормозного устройства. Температуру контролируют при остановленной гидромуфте. Для [c.401]

    Шум в двух измерениях. Двумерные спектры содержат случайный шум, возникающий главным образом за счст тепловых шумов в датчике и начальных каскадах приемника. Он имеет ту же природу, что и шум в одномерном спектре, и в эксперименте OSY при наблюдении протонов становится значимым лишь при достаточно слабых сигналах в спектре. Значительно больше неприятных осложнений возникает из-за случайной интерференции сигиалов, зависяшей от способа проведения эксперимента, Поскольку интерферограммы, образующие координату ty, получаются как результат большой серии экспериментов, разнообразные нестабильности аппаратуры могут вызывать ложные модуляция сигнала. Представим, например, что произойдет, если импульсы, используемые для возбуждения сигнала, были ие всегда одинаковыми по длительности и ш интенсивности. Тогда амплитуда сигналов в период t будет меняться нежелательным для иас образом, приводя в итоге к появлению случайных частотных компонент по зтой координате. Аналогично этому появление ложной частотной модуляции может быть вызвано любой нестабильностью отношения поля к частоте, возникающей из-за недостаточной эффективности системы стабилизации, или если прибор подвергается внешним воздействиям. Этн эффекты, а также множество других [7], которых так много, что иногда кажется удивительным, что эксперимент вообще работает, приводят к явлению, называемому шумом по ty. [c.316]

    Таким образом, электростатическое поле одной сложной системы зарядов будет воздействовать на жесткую систему других зарядов ориентирующим и притягивающим или отталкивающим образом Это имеет в частности, то следствие, что у двух взаимодейстщтощих молекул появляются выгодные и невыгодные направления сближения в зависимости от их внешних полей и относительных ориентаций в пространстве Следует ясно отдавать себе отчет в том, что молекулярный электростатические потенциалы (МЭСП) не позволяет полностью охаракт )изо-вать межмолекулярные взаимодействия из-за отсутствия в выражении для потенциальной функции составляющей, препятствующей сближению молекул на очень малые расстояния Тем не менее, во многих случаях знание МЭСП дает возможность предсказывать не только энергию стабилизации комплекса, но и его геометрию МЭСП позволяет получать важную информацию о реакционной способности молекул, особенно биомолекул МЭСП часто используется не только для предсказания положений протонирования в молекуле, но и дпя оценки положений электрофильной атаки многоатомными молекулами [c.176]

    Общая особенность в поведении ионных частиц реакции - это зависимость активности от факторов внешней (сольватация ионов, электростатический эффект противоиона) и внутренней (влияние электродонорных заместителей) стабилизации, а различие - в обратимом и необратимом характере образования ионов аренония и карбония соответственно. Следовательно, при наличии в системе более сильного, чем арен, 71-акцептора должно происходить его протонирование. Это подтверждается при использовании для инициирования полимеризации изобутилена различных комплексов присоединения протона на основе замещенных аренов, в том числе в составе полимеров стирола. [c.84]

    Большое количество экспериментальных данных, показывающих способность нефтяных систем изменять свою внутреннюю организацию под воздействием внешних факторов [126-129] и с течением времени [142, 123-125], позволило установить, что нефтеподобные системы являются термодинамическими подвижными системами, в которых непрерывно осуществляются гомолитические переходы диамагнитных молекул в парамагнитные и обратно, и что именно парамагнитные молекулы и гомолетические процессы вызывают переорганизацию надмолекулярных структур (НДС), т.е. определяют поведение системы в целом. Это привело к пониманию равновесной динамики коллоидного состояния сложных объектов, в частности условий образования, стабилизации радикалов и их рекомбинации в НДС при изменении внешних условий [81, 130, 131, 132, 82, 133-135]. [c.73]

    Сравюш временной ход составляющих в энергетических балансах на рис. 64 (п = 2/3) и рис. 69 (п = 0). Расчеты проводились при одинаковых значениях всех свойств инертной части ТА-системы, теплофизических свойств обра.зца, его геометрии. Кинетические параметры реакции одни и те же, за исключением порядка реакции. В -режиме (по терминологии гл. 3 — квази-статическом режиме) согласно модели тепловых взаимодействий проявляется отчетливый отклик на вид кинетической функции. Соотношения энергетического баланса дополняют и проясняют картину осуществления стабилизации и ее срыва. Остановим внимание на последнем, т. е. на следствии теплового влияния кинетической функции. Из него вытекает особая чувствительность процессов, идущих в образце при -режиме, к кинетическому закону реакции. Этим отличается -режим от обычного динамического, в котором внешнее тепловое воздействие не зависит от хода реакции. В -режиме наблюдаются случаи стабилизации и невозможности ее осуществления. Изучение случаев нескомпенсированной нелинейности может внести изменения в круг задач, решаемых в -режиме. [c.97]

    Две другие возможности стабилизации органических ионов связаны с факторами внешней среды, в которых находятся активные частицы. Важнейшим из таких факторов являтся природа противоиона. Если противоион обладает низкой реакционной способностью и (что часто взаимосвязано) высокой де-локализацией заряда, то это затрудняет его ассоциацию с органическим ионом с образованием ковалентной связи и повышает стабильность такой ионной системы. В этом смысле хорошими противоионами для карбокатионов являются анионы типа перхлората (39) или трифлата (40), а также такие координационно насьпценные анионы, как тетрафторборат (41), гексахлорантимонат [c.94]

    Тип стабилизации. В современных спектрометрах ПМР применяются следующие системы стабилизации а) термрстабилиза-ция магнита (для постоянных магнитов) б) суперстабилизация (для электромагнитов) в) внешняя спиновая (илн ядериая) ста- билизация г) внутренняя спиновая стабилизация. [c.138]

    Криостатом обычно называют аппарат, во внутреннем объеме которого поддерживается низкая температура для проведения измерений физических величин, обеспечения работы различных датчиков и приборов, а также для осуществления процессов при низких температурах. Криостат — это по существу термостат, предназначенный для тепловой стабилизации в области весьма низких температур. Криостаты чрезвычайно разнообразны по своему назначению и конструктивному выполнению, а также по величине заданного уровня температур. Нередко конструкция криостата совмещена с холодильной машиной, обеспечивающей низкотемпературный уровень. К таким системам, в частности, относятся микрокриогенные устройства, в которых охлаждаемый приемник инфракрасного излучения или квантовый усилитель помещен вместе с охлаждающи.м устройством (дроссельный микроохладитель и т. п.) в одной низкотемпературной камере. Криостаты для адиабатического размагничивания также наряду с исследуемым объектом включают источник охлаждения — парамагнитную соль. Многие другие типы криостатов используют внешние источники охлаждения — обычно сжиженные газы азот, водород, гелий. В некоторых типах криостатов температура должна все время поддерживаться постоянной с малы.ми допустимыми отклонениями. В других криостатах температура должна изменяться, обеспечивая ряд ее постоянных значений в заданном интервале. [c.231]

    Для стабилизации ингибитора его подвергают термообра ботке без доступа воздуха с последующей перегонкой, причем контакт горячих продуктов термообработки с воздухом должен быть исключен или сведен к минимуму Ингибитор полуфабри кат загружают в куб, создают в нем пониженное давление для удаления воздуха, через час включают обогрев глухим паром и отгоняют воду Затем начинают внешний обогрев куба дымовыми газами и отгоняют креозотовое масло Когда темпера тура поднимется до 200 °С, отгонку прекращают, отключают вакуум и выдерживают ингибитор при этой температуре под атмосферным давлением в течение 3 ч Снова подключают куб к вакуум системе и при интенсивном нагревании его содержи мого отгоняют ингибитор Температура дистиллята, поступаю щего в мерник, должна быть в пределах 20—30 °С [c.164]

    Хотя мы полагаем, что взаимодействие двойных полимерных слоев (рис. 1) имеет определяющее значение при стабилизации дисперсий блок- и привитыми сополимерами, нельзя исключать вероятное влияние на стабилизацию ионных зарядов. Дело в том, что адсорбированные на поверхности частиц двуокиси титана бутадиен-стирольные блоксополимеры содержат карбоксильные группы. Ионные силы могут способствовать как стабилизации, так и флокуляции. В исследованных системах стабильность дисперсий уменьшается с повышением степени карбоксилировапия. При слишком высоких степенях карбоксилировапия бутадиен-стирольные блоксополимеры дей-, ствуют скорее как флокулирующие, чем как диспергирующие агенты. Простое объяснение этого эффекта можно дать, если предположить, что полимерные цепи адсорбируются на поверхности твердой частицы в виде петель, выступающих в дисперсионную среду Г17]. Если в полибутадиеновом блоке сополимера присутствует слишком много карбоксильных групп, не все чз них смогут войти в соприкосновение с поверхностью двуокиси титана. Некоторые расположатся па внешней части складок цепей, которые выступают в дисперсионную среду. Далеко располон енные группы могут адсорбироваться на поверхности другой частицы двуокиси титана, обусловливая, таким образом, флокуляцию за счет сшивания. [c.314]

    Так как на частоту генераторов существенное влияние оказывает температура элементов генераторов, в особенности катушек контуров, то в настоящей конструкции предусмотрена температурная стабилизация всего прибора (он помещен в воздушный термостат с температурой около 35 °С). В качестве измерительного конденсатора в диэлько-метре применен конденсатор коаксиального типа (рис. 18). В центральной части конденсатора расположена электродная система, состоящая из двух платиновых цилиндриков с общей осью, находящихся один в другом. Внешний цилиндр служит одной обкладкой конденсатора и одновременно экранирует весь конденсатор от посторонних электрических полей. Второй обладкой конденсатора является внутренний, малый цилиндр. Для расширения рабочего диапазона прибора можно либо включать в клемы Сд (см. рис. 16) дополнительную емкость (индуктивность), либо пользоваться конденсаторами с другими размерами обкладок. [c.60]

    Существует ряд технологических процессов, в которых ни стабилизация ведущих параметров, ни их изменение по заданной или меняющейся программе не приносят желаемого эффекта. В этом случае ставится задача построения такой системы регулирования, которая могла бы в зависимости от внешиих условий автоматически изменять свои параметры или даже структуру, с тем чтобы обеспечить для каждой возможной ситуации наилучшие условия работы. Такие системы называют самонастраивающимися. Частным. случаем самонастраивающихся систем, представляющим интерес для современной технологии обработки воды и производственных стоков, являются системы экстремального регулирования. В системе экстремального регулирования осуществляется непрерывный автоматический поиск такого регулирующего воздействия, которое о-беспечило бы поддержание минимального или максимального значения регулируемого параметра, называемого в этом случае показателем экстремума. Использование системы экстремального регулирования целесообразно для таких технологических процессов, в которых различные внешние возмущения могут в широких пределах изменять абсолютное значение регулируемого параметра, но его минимальная или максимальная величина характеризует оптимальный режим работы объекта в любых условиях. Например, на водоподготовительных установках ТЭЦ одним из возможных показателей оптимальной дозы извести, используемой для умягчения воды, является электропроводность обработанной воды в смесителе. Причем наилучшему проведению процесса соответствует минимальное значение электропроводности. Абсолютное значение электропроводности может быть различным, в зависимости от солевого состава исходной воды. Для регулирования такого [c.53]


Смотреть страницы где упоминается термин Внешней стабилизации система: [c.110]    [c.234]    [c.65]    [c.162]    [c.19]    [c.353]    [c.74]    [c.170]    [c.94]    [c.155]    [c.87]    [c.125]    [c.46]    [c.130]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Система стабилизация

Стабилизация внешняя



© 2025 chem21.info Реклама на сайте