Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетические для двухатомной молекулы

Рис. 30. Энергетическая диаграмма уровней двухатомных молекул элементов 2-го периода при значительном (а) и незначительном (6) энергетическом различии 2з- и 2р-орбиталей Рис. 30. <a href="/info/18092">Энергетическая диаграмма</a> уровней <a href="/info/986045">двухатомных молекул элементов</a> 2-го периода при значительном (а) и незначительном (6) энергетическом различии 2з- и 2р-орбиталей

Рис. 44. Энергетическая диаграмма уровней двухатомных молекул элементов 2-го периода при значительном (а) и незначительном ( ) энергетическом различии атомных 2s- и 2р-орбиталей (Is-AO и о Is-MO в схеме не указаны) Рис. 44. <a href="/info/18092">Энергетическая диаграмма</a> уровней <a href="/info/986045">двухатомных молекул элементов</a> 2-го периода при значительном (а) и незначительном ( ) энергетическом <a href="/info/1734795">различии атомных</a> 2s- и 2р-орбиталей (Is-AO и о Is-MO в схеме не указаны)
    Энергия ионизации молекул. В прямой зависимости от характера распределения электронов по связывающим и разрыхляющим молекулярным орбиталям находится также значение энергии ионизации молекул. Как мы видели, в двухатомной молекуле связывающие электроны лежат глубже, чем в атоме, а разрыхляющие — наоборот. Таким образом, энергия ионизации молекулы, верхний занятый энергетический уровень которой является связывающим, выше, чем таковая свободного атома. Например, энергия ионизации молекулы N2 (15,58 эВ) больше энергии ионизации атома азота (14,53 эВ). Если же верхний занятый уровень молекулы является разрыхляющим, то энергия ионизации молекулы меньше, чем атома. Так, энергия ионизации молекулы О 2 (12,08 эВ) меньше энергии ионизации атома кислорода (13,62 эВ). [c.56]

Рис. 8. Вращательно-колебательные энергетические уровни, переходы молекулы при поглощении света и вращательно-колебательный спектр двухатомных молекул Рис. 8. <a href="/info/50328">Вращательно-колебательные</a> <a href="/info/463287">энергетические уровни</a>, <a href="/info/379827">переходы молекулы</a> при <a href="/info/6122">поглощении света</a> и <a href="/info/917513">вращательно-колебательный спектр двухатомных</a> молекул
    Энергетическая диаграмма уровней атомных и молекулярных орбиталей двухатомных молекул элементов 2-го периода показана на рис. 30, а. [c.53]

    Опишите электронное строение двухатомной молекулы N0 на основе теории молекулярных орбиталей. Следует ли из энергетической диаграммы молекулярных орбиталей этой молекулы наличие у нее парамагнитных свойств Согласуется ли ваш ответ на этот вопрос с возможными предсказаниями, основанными на рассмотрении льюисовой (валентной) структуры молекулы N0 Как соотносится энергия связи в молекуле N0 с энергией связи в ионе N0 (больше, меньше, равна)  [c.547]


    Если на молекулу действует внешнее электрическое поле, ядро будет смещаться по отношению к электронам. Это означает, что центр отрицательных зарядов сместится по отношению к центру положительных зарядов. Таким образом, будет возникать наведенный диполь дополнительно к тому диполю, который уже мог существовать. Это свойство назьшается поляризуемостью молекул. Даже в двухатомных молекулах с одинаковыми атомами колебания увеличивают искажение электронного облака, образующего связь, и таким образом вызывают изменение начальной поляризуемости. Всякие колебания, которые вызывают такие изменения, будут увеличивать частоту рассеянного света в спектре комбинационного рассеяния и называются активными в этом спектре. Смещение частоты соответствует изменению энергетического уровня молекулы. Интенсивность линии рассеяния зависит от изменения поляризуемости, связанного с данным типом колебания. [c.316]

    Гомоядерные двухатомные молекулы. Пи(л)-орбитали. Вырожденные энергетические уровни. Парамагнетизм и диамагнетизм. [c.509]

    Энергетическое различие 2s- и 2/ -орбиталей в периоде увеличивается от I к VIII группе (см. рис. И). Поэтому приведенная последовательность молекулярных орбиталей характерна для двухатомных молекул элементов начала периода вплоть до N2. Так, электронная конфигурация молекулы азота в основном состоянии имеет вид [c.54]

    Помимо электронных энергетических уровней молекулы обладают еще энергетическими уровнями, связанными с вращательным (рис. 13-30) и колебательным (рис. 13-31) движениями. Вообще говоря, любая линейная многоатомная молекула может вращаться вокруг трех взаимно перпендикулярных осей, проходящих через ее центр тяжести, как это показано на рис, 13-30. Для линейной (в том числе и всякой двухатомной) молекулы одна из этих осей совпадает с прямой линией, на которой находятся ядра всех атомов, поэтому линейные молекулы могут совершать реальное вращение только вокруг двух остальных осей. На рис. 13-31 показаны тины колебаний двухатомной, линейной трехатомной и нелинейной трехатомной молекул. При обсуждении молекулярных колебаний часто оказывается удобным представлять себе, что связи между атомами обладают свойствами упругих пружинок, которые поэтому и изображены на рис. 13-31. [c.583]

    Символ К К означает наличие четырех электронов на внутренних оболочках с п = 1, которые не оказывают влияния на химическую связь. Согласно экспериментальным данным, длина связи в В2 равна 1,59 А, т.е. меньще, чем в молекуле 2 (2,67 А). Энергия связи соответственно больше 274 кДж моль по сравнению с 110 кДж моль Оба эффекта обусловлены большим положительным зарядом ядра бора, который обусловливает более прочное взаимодействие с электронами. Веским аргументом в пользу теории молекулярных орбиталей явилось экспериментальное обнаружение (путем магнитных измерений) в молекуле В2 двух неспаренных электронов. Оно служит прямым подтверждением именно той последовательности орбитальных энергетических уровней и к , которая указана на рис. 12-8 если бы последовательность этих орбитальных уровней была обратной, оба электрона должны были располагаться со спаренными спинами на орбитали а , и в молекуле не было бы неспаренных спинов. (Исторически дело обстояло так неспаренные электроны в В2 не были предсказаны заранее экспериментальное обнаружение неспаренных электронов в В2 заставило пересмотреть прежние взгляды на последовательность орбитальных энергий в двухатомных молекулах и придать ей вид, иллюстрируемый рис. 12-8.) [c.526]

Рис. 89. Схема электронных, колебательных и вращательных энергетических уровней двухатомной молекулы Рис. 89. <a href="/info/480291">Схема электронных</a>, колебательных и <a href="/info/3559">вращательных энергетических</a> уровней двухатомной молекулы
    Сформулируйте правило построения энергетических диаграмм молекулярных орбиталей двухатомных молекул, состоящих из разных атомов. [c.37]

    Исследование электронного строения гетероядерных двухатомных молекул общего вида АВ проводится подобно тому, как это делалось для гомоядерных молекул. В том и другом случае получаются сходные орбитально-энергетические диаграммы, лишь с той разницей, что орбитальные уровни более электроотрицательного атома расположены глубже, чем у менее электроотрицательного атома (рис. 12-13). Следовательно, связывающие молекулярные орбитали содержат преобладающий вклад более электроотрицательного атома, а разрыхляющие орбитали-преобладаю- [c.537]

    Энергетическая диаграмма уровней атомных и молекулярных орбиталей двухатомных молекул элементов 2-го периода показана на рисунке 26. Этой диаграммой можно воспользоваться для выяснения распределения электронов по орбиталям в молекулах. При этом следует учесть энергию орбиталей, принцип Паули и правило Гунда. Так, реакция образования молекулы N2 из атомов может быть записана так  [c.49]


Рис. 5. Схема вращательно-колебательных энергетических уровней и спектра двухатомных молекул Рис. 5. <a href="/info/50334">Схема вращательно</a>-<a href="/info/3561">колебательных энергетических</a> уровней и <a href="/info/260869">спектра двухатомных</a> молекул
    Диаграмма энергетических уровней гетероядерных двухатомных молекул элементов 2-го периода аналогична диаграмме гомоядерных двухатомных молекул элементов 2-го периода. Ниже показано распределение электронов по орбиталям молекулы СО и ионов СЫ и N0+. [c.94]

    Назовите двухатомные молекулы. элементов I и И периодов, у которых а) отрыв элект1рона приводит к усилению связи, б) прибавление электрона приводит к ослаблению связи. Объясните причины. Нарисуйте энергетические диаграммы молекулярных ррбиталей ионов и молекул. Предскажите магнитные свойства ионов и молекул. [c.36]

    Значительно труднее вопрос о химической природе и об энергетическом состоянии продуктов фотодиссоциации молекул. Даже в простейшем случае двухатомные молекул решение этого важного с точки зрения кинетики и механизма фотохимической реакции вопроса нуждается в дополнительном исследовании. [c.159]

    Симметрия. В двухатомной молекуле между ядрами возникает сильное электрическое поле, направленное вдоль оси молекулы. Это направление (ось г) становится особым для молекулярного электрона и важнейшим из квантовых чисел становится магнитное квантовое число /л г = О, 1, 2,. .., 1, определяющее проекцию вектора I орбитального момента на ось молекулы. Взаимодействие электрона с осевым электрическим полем ядер значительно и зависит от абсолютной величины mi, но не от знака. Поэтому вводят квантовое число X = т,1. Состояния (МО) с разными К сильно различаются по энергии, представляя собой, по сути, отдельные энергетические уровни. В соответствии с квантовым числом X молекулярные орбитали двухатомных (и линейных) молекул обозначаются строчными греческими буквами  [c.72]

    На рис. 8 показаны энергетические уровни, переходы молекул при поглощении квантов электромагнитного излучения и вид спектра поглощения двухатомных молекул. Уравнения (V. 17) и (V. 18) выведены с учетом того, что вращательная постоянная В зависит от энергии колебательного движения. Вращательная постоянная В уменьшается с ростом энергии колебательного движения, что выражается уравнением [c.36]

    На рис. 27 представлены различные уровни потенциальной энергии двухатомной молекулы. Низший энергетический уровень, или основное состояние, выражается кривой 5о энергетические уровни, отвечающие разным колебательным состояниям молекул [c.50]

Рис. 22. Энергетическая диаграмма уровня 1л-орби-талей атомов и о,-, а -орбиталей двухатомной молекулы Рис. 22. <a href="/info/18092">Энергетическая диаграмма</a> уровня 1л-орби-талей атомов и о,-, а -<a href="/info/463290">орбиталей двухатомной</a> молекулы
    Пользуясь энергетической последовательностью орбиталей и их типами для гомоядерной двухатомной молекулы (см. рис. 26), составьте электронные конфигурации молекул СО и N0. Каков в них порядок связи Какая из них парамагнитна  [c.56]

    Как указывалось, энергетическое различие 2s- и 2р-орбиталей в периоде увеличивается от I группы к VHI (см. табл. 10). Поэтому приведенная последовательность молекулярных орбиталей характерна для двухатомных молекул элементов начала периода, вплоть [c.90]

    Вращательные переходы Рис. 104. Схема электронных тельных и вращательных энергетических уровней двухатомной молекулы (масштаб не выдержан) [c.174]

    Напишите выражение для вращательной энергни двухатомной. молекулы и укажите, на какую величину может меняться вращательное квантовое число при энергетических переходах вследствие взаимодействия с электромагнитным излучением. [c.6]

    Каково взаимное положение атомных орбиталей разных атомов в энергетических диаграммах гетероядерных двухатомных молекул Как расположены связывающие и разрыхляющие МО относительно атомных орбиталей в таких случаях  [c.33]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Строение и свойства двухатомных молекул Ы2, В2, Сг, N2, О2, F2, СО, N0 и др. наиболее просто, наглядно и правильно объясняются методом МО. В молекулах элементов второго периода МО образуются в результате взаимодействия атомных 2s- и 2р-орбиталей участие внутренних ls-электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 4.20 приведена энергетическая схема образования молекулы Lia здесь имеются два связывающих электрона, что соответствует образованию простой связи. [c.127]

    В атомах существует строгая последовательность расположения электронных подоболочек по энергиям. В пределах одной электронной оболочки ниже всех располагается 8-подуровень, затем идет р-подуровень и т. д. В двухатомных молекулах также существует своя очередность расположения энергетических уровней МО определенной симметрии. Из рис. 4.22 видно, что ниже всех располагается энергетический уровень связывающей МО, образованной из АО з-типа, несколько выше располагается уровень разрыхляющей МО, затем располагаются уровни МО, образованных из АО р-типа. [c.128]

    В разных молекулах будет неодинаковое количество валентных электронов. Эти электроны, заполняя энергетические уровни МО в соответствии с принципом Паули и правилом Хунда, определяют отличия свойств одних двухатомных молекул от других (табл. 4.4). При изменении числа валентных электронов в молекуле изменяется не только порядок связи и, следовательно, ее длина, прочность, но и магнитные, спектральные и, главное, химические свойства молекул. [c.128]

    Квадраты этих функций определяют распределения электронной плотности, соответствующие каждой молекулярной орбитали. Все щесть молекулярных орбиталей схематически изображены на рис. 13-25. Три из них являются связывающими, а три-разрыхляющими. Их энергетические уровни показаны на рис. 13-26. Отметим, что на примере рассматриваемых я-орбиталей иллюстрируется общее правило, согласно которому орбитали с больщим числом узловых поверхностей имеют более высокую энергию. Справедливость этого утверждения можно проверить на орбиталях гомоядерных и гетероядерных двухатомных молекул, обсуждавщихся в гл. 12, и даже на волновых функциях атома водорода. [c.575]

    На примере гетероядерных двухатомных молекул можно проиллюстрировать необходимость в надлежащей орбитальной симметрии для получения максимального перекрывания и взаимодействия, а также сооткошекяе между энергетическим соответствием атомных орбиталей и ионным характером образующейся связи. В качестве метода измерения ионного характера связи можно обсудить дипольные моменты. [c.576]

    Для симметричных двух- и многоатомных молекул нужно учитывать наличие симметрии в строении, из-за чего часть энергетических уровней выпадает. Поэтому в уравнение (IV, 94) вводится число симметрии а, равное, числу неразличимых состояний, получающихся при вращении молекулы на 360 . Например, для симметричных молекул Oj, СО2, С2Н2 0 = 2, так как нри вращении на 360° вокруг их оси симметрии они два раза принимают одинаковое положение для пирамидальных молекул NH3, AS I3 и других а=3, так как при вращении молекул вокруг оси симметрии их пространственное положение будет повторяться через каждые 120° для правильной тетраэдрической молекулы СН4 о=12, так как вращение вокруг каждой из четырех осей тетраэдра дает три совпадающих положения. Для многоатомных молекул учитывают также различие моментов инерции I вокруг трех координатных осей. Таким образом, для симметричных двухатомных молекул ( L, О.,, Нз и др.) уравнение (IV, 94) принимает вид (а = 2) [c.162]

Рис. 28. Энергетическая диаграмма орбиталей гетероядериой двухатомной молекулы Рис. 28. <a href="/info/20746">Энергетическая диаграмма орбиталей</a> гетероядериой двухатомной молекулы
    Наиболее простые системы с химической связью — двухатомные молекулы газов (N2, Н2, О2), состав которых установил еще Авогадро. Ион Н2+, содержащий два протона и электрон, — вот самая простая система из трех частиц с одной химической связью. Для того чтобы понять, что же такое химическая связь в самом простом ее проявлении, выясним причины устойчивости этих простых молекул. Однако прежде всего познакомимся с экспериментальными данными об энергетических уровнях молекул. Они значительно более разнообразны, чем в атомах, так как в молекулах наряду с электронными энергетическими переходами происходят также изменения колебательной и вращательной энергии. Поскольку все эти изменения энергии накла-дыЕ аются друг на друга, молекулярные спектры по большей части имеют очень сложное строение. Можно различать три ти-Таблица А.6. Характеристика спектров электромагнитного излучения [c.60]


Смотреть страницы где упоминается термин Энергетические для двухатомной молекулы: [c.198]    [c.12]    [c.95]    [c.140]    [c.99]    [c.100]    [c.9]    [c.76]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.247 ]

Современная общая химия (1975) -- [ c.2 , c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Двухатомные молекулы

Энергетические молекул

Энергетических уровней диаграмма гомоядерные двухатомные молекулы, влияние разности энергий уровней

Энергетических уровней диаграмма двухатомные молекулы второго



© 2025 chem21.info Реклама на сайте