Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилен из углеводородов

    Переработка продуктов хлорирования сильно усложняется тем, что оно идет с большим избытком углеводорода. Если целью процесса в первую очередь является получение высших продуктов хлорирования метана, то хлористый метил и хлористый метилен могут быть возвращены в процесс. Если хотят получить хлористый метилен, то на повторное хлорирование возвращают в первую очередь хлористый метил. [c.114]


    При выборе экстрагента для очистки дифенилолпропана необходимо учитывать, что он должен обладать следующими свойствами хорошо растворять примеси и плохо — дифенилолпропан иметь низкую температуру кипения, что позволит осушать дифенилолпропан при низкой температуре (это особенно важно ввиду невысокой термостойкости дифенилолпропана) быть доступным и недорогим. Кислородсодержащие растворители (этанол, ацетон, уксусная кислота и др.) непригодны для этой цели вследствие высокой растворимости в них дифенилолпропана. Наиболее подходящими растворителями являются парафиновые углеводороды (гептан) " , низкокипящие хлорзамещенные алифатические углеводороды (хлористый метилен, дихлорэтилен) 31 ароматические углеводороды (бензол, толуол, ксилол) и их хлорпроизводные а также ароматические углеводороды с добавкой фенола или крезола " . [c.166]

    Для дальнейшей очистки получающийся раствор формальдегида обрабатывают растворителями — хлорированными углеводородами (хлористым метиленом, тетрахлорэтаном и др.). После-отделения в сепараторе от растворителя формальдегид подвергается отпарке и дальнейшему концентрированию в колонне, работающей под вакуумом (685 мм рт. ст.). Формальдегид при [c.95]

    Гидрогенолиз циклопропанового кольца в бицикло(3,1,0)гек-санах, осуществляемый в токе водорода над платинированным углем, приводит к получению геж-замещенных углеводородов [ 13— 15]. Вместо диазометана для получения бицикло(3,1,0)гексанов можно воспользоваться обработкой циклоолефинов иодистым метиленом в присутствии цинк-медной пары (реакция Симмонса— Смита) [961  [c.255]

    К первым относится ряд полярных растворителей спирты, кетоны, галоидалкилы. Наилучшими из них являются изопропиловый спирт, метилэтилкетон и особенно метилизобутилкетон и хлористый метилен. Эффективность этих растворителей не случайна, так как они легко растворяют жидкие углеводороды и способствуют преодолению сил молекулярного сцепления углеводородов с длинными н-парафиновыми цепями с другими углеводородами масла. [c.223]

    Строение предельных углеводородов. Каждый предельный углеводород можно произвести от соответствующего предыдущего члена гомологического ряда путем замещения одного атома водорода метилом тем самым состав молекулы усложняется на группу СНз (метилен). Таким путем от метана производим этан и от этана—пропан  [c.47]

    Образование м-мононитросоединений происходит при действии мономерной молекулы N02 (при применении большого избытка нитруемого углеводорода N02 растворяется в последнем). В начальной стадии нитрования присутствуют лишь незначительные количества двуокиси азота, растворенные в азотной кислоте (для повышения этой начальной концентра-ции А. И. Титов обычно добавлял к реакционной смеси триокси-метилен, который при взаимодействии с азотной кислотой легко образует N02). [c.258]


    В разд. 6.5 уже было отмечено, что в состав некоторых. молекул углеводородов входят кольца из атомов углерода. Простейшим циклическим углеводородом является циклопропан (называемый также три-метиленом) СзНе, структура которого приведена яа рис. 6.9. Это бесцветный газ, имеющий стандартную энтальпию образования 20,4 кДж- [c.187]

    Как видно из данных табл. 65, потенциальная опасность ингаляционного воздействия на этом уровне, разумеется, выше всего у хлористого метила (газ), меньше — у четыреххлористого углерода. Степень биологической активности хлорзамещенных углеводородов ряда метана, по абсолютному значению Lim,ас примерно одинакова для всех соединений, кроме хлористого метила, который наиболее активен. По Za также наиболее опасен хлористый метил, наименее опасен — хлористый метилен. Различия в степени опасности не могут считаться существенными (менее 3 раз). [c.171]

    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    Из этих примеров высокомолекулярных алифатических углеводородов видно, что полиметиленовые ряды кристаллизуются очень легко благодаря компактности и регулярности их структуры. Другие углеводороды с регулярной структурой, как полиизобутилен, полиэтилиден и полипропилиден, менее склонны к кристаллизации вследствие большой длины цепей. Более или менее нерегулярно разветвленные углеводороды показывают различную степень кристалличности в зависимости от расположения метиленных групп в молекуле. [c.170]

    Благодаря наличию у радикалов свободных валентностей энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций, и, следовательно, они идут с такой же большой скоростью, как и реакции, в которых участвуют атомы. Особенно интересны радикалы, имеющие две свободные валентности. К таким радикалам относятся двухвалентные атомы О, 8, 8е и радикал метилен СНг , получающиеся в результате термического или фотохимического разложения диазометана (СНгМг- СНз- + N2) или фотохимического разложения кетена (СН2 = С0— СНз +С0). Устойчивые органические бирадикалы могут быть получены путем отрыва двух атомов водорода от молекул углеводородов. Активные бирадикалы имеют большое значение в химических процессах, так как способствуют возникновению так называемых разветвленных цепных реакций. [c.85]

    Растворители, применяемые 1в процессе карбамидной депарафинизации, предназначены в основном для снижения вязкости сырья и создания необходимого контакта карбамида с углеводородами, что при прочих равных условиях обеспечивает большую-полноту извлечения комплексообразующих компонентов. Для создания гомогенной системы растворитель должен в той или иной степени растворять и сырье и карбамид. В качестве растворителей для карбамидной депарафинизации предложено много соединений (спирты и кетоны, хлористый метилен, дихлорэтан, ди-фтордихлорметан, бензол, крезол, этиленгликоль, уксусная кислота, изоо ктан, петролейный эфир, бензин, лигроин, а также вода или водные растворы низших спиртов). Однако далеко не все предложенные растворители нашли промышленное применение в--этом процессе. [c.215]

    Одним из эффективных методов повышения пожарной безо-пас1ости в производстве является замена огнеопасных легко-летучих жидкостей, часто применяемых в качестве растворителей, менее опасными жидкостями с температурой кипения выше 110°С (амилацетат, этиленгликоль, хлорбензол, ксилол, амиловый спирт и др.) или негорючими растворителями, К таким растворителям относятся четыреххлористый углерод, хлористый метилен, трихлорэтилен и другие хлорированные углеводороды. [c.415]

    J.I литературе можно встретить данные [108] об испытаниях уна двигателях), в частности на двигателях с наддувом и таких труднодоступных углеводородов, как спиропентан и метилен-цнклобутан. [c.70]

    В процессе реакции исходный углеводород расходуется и в реакционной смеси накапливается монозамещенный алкилгалогеиид. Это является причиной того, что галоген-радикалы могут взаимодействовать не с исходным алканом, а с уже замещенным. Например, при хлорировании метана среди продуктов, кроме метилхло-рида, выделяли дихлорметан (хлористый метилен), трихлорметан (хлороформ) и тетрахлорметан (четыреххлористый углерод) [c.210]


    Производство галогенсодержащих углеводородов имеет большой удельный вес в промышленности органического синтеза. Хлорированием и гидрохлорнрованием углеводородов жирного и ароматических рядов получают продукты, имеющие важное народнохозяйственное значение. Они широко используются в медицине, лакокрасочной промышленности, сельском хозяйстве и т. д. Многие из них являются хорошими растворителями (хлористый метилен, четыреххлористый углерод) и полупродуктами в органическом синтезе (1,2-дихлорэтан, хлорбензол). [c.125]

    Реакция замещения атомов водорода в парафиновых углеводородах на галоген, открытая в 1940 г. Дюма, получила широкое применение в промышленности. Она лежит в основе промышленного способа получения хлоропроизводных метана, этана и других предельных углеводородов. Ассортимент выпускаемых в СССР и за рубежом хлоралканов непрерывно расширяется. Однако наиболее широко используются хлористый метилен, хлороформ, четыреххлористый углерод, хлористый этил, хлорпентаны и керилхлорид. Технические требования к отдельным представителям этого ряда соединений представлены в табл 19. [c.125]

    При отнятии от молекулы углеводорода двух атомов водорода получаются двухвалентные радикалы. Их названия также производятся от названий соответствующих предельных углеводородов с заменой окончания -ан на -илиден (если атомы водорода оторваны от одного атома углерода) или -илен (если атомы водорода оторваны от двух соседних атомов углерода). Радикал СНа= имеет название метилен. [c.282]

    Названия радикалов используются в номенклатуре многих производных углеводородов. Например СНз1 - иодистый метил, С НдС -хлористый бутил, СН2С12 - хлористый метилен, СгН Вгг - бромистый этилен (если атомы брома связаны с разными атомами углерода) или бромистый этилиден (если атомы брома связаны с одним атомом углерода). [c.336]

    Названия одновалентных радикалов образуются из названий соответствующих предельных углеводородов, от которых они произошли, с заменой окончания ан на ил. Названия двухвалентных радикалов также образуются из названий соответствующих предельных углеводородов с заменой окончания ан на илиден (исключение составляет двухвалентный радикал, соответствующий метану, который называется — метилен)  [c.27]

    При отнятии от молекулы углеводорода двух атомов водорода получаются двухвалентные радикалы. Их названия также производятся из названий соответствующих предельных углеводородов с заменой окончания -ан на -илиден (исключение составляет двухвалентный радикал, производный от метана, который имеет название метилен). Радикалы образуются не только органическими, но и неорганическими соединениями. Так, если от азотной кислоты отнять гидроксил ОН, то получится одновалентный радикал —ЙОг, называемый нитрогруппой, и т. д. [c.339]

    Метилен СНг в свободном виде, не существует. Во всех реакциях, которые должтл были вести к образованию метилена, всегда получался углеводород с удвоенпым составом—этилен С2Н4. [c.72]

    Доказательством строения адамантана послужил синтез этого углеводорода (Прелог, 1941). Диметиловый эфир бицикло-[3,3,1]-нонан-дион-2,6-дикарбоновой-3,7 кислоты III был алкилирован бромистым метиленом для введения метиленового мостика, после чего обе кетогруппы были удалены восстановлением по Кижнеру декарбоксилирование в присутствии порошкообразной меди при 400 °С протекало с низким выходом (2%), однако его удалось удовлетворительно провести с применением реакции Хунсдиккера (см. том I стр. 400) и гидрирования 1,3-дибромадамантана VI  [c.58]

    Смит (1961) нитрованием адамантана в уксусной кислоте при 140 °С в атмосфере азота под давлением получил с умеренным выходом 1-нитроадамантан (т. пл. 159°С). Хлорирование адамантана протекает менее избирательно, чем бромирование или нитрование, и приводит к смеси продуктов. При окислении воздухом образуются небольшие количества адамантанола-1 и адамантанона-2 (т. пл. 286°С). Действием на адамантан в хлористом метилене раствором надуксусной кислоты в этилацетате при облучении Шлейер (1961) осуществил радикальное гидроксилирование этого углеводорода. Обработку реакционной массы после этой реакции удобно проводить путем окисления по методу Джонса (Н2Сг04 + Н2504 в ацетоне) с последующим хроматографическим разделением образующейся смеси адамантана, адамантанона-2 (1 часть) и адамантанола-1 (3 части). [c.60]

    Хлористый метилен, СНгСЬ, использовался в качестве растворителя электролитов при проведении как окислительных, так и восстановительных реакций, хотя по своим свойствам он не очень подходит для этих целей. Хлористый метилен находится в жидком состоянии в несколько неудобной для работы области температур (от -97 до +40 °С), имеет довольно высокое давление паров (400 мм при 24 °С) и низкую диэлектрическую постоянную (9). Все же он является апротонным растворителем, в котором можно проводить электролиз 1]. Кроме того, как оказалось, радикалы ароматических углеводородов более стабильны в хлористом метилене, чем в более распространенных растворителях [c.47]

    Границы стабильности растворов. Данные относительно областей рабочих потенциалов в хлористом метилене приведены в табл. 12. Поскольку двузамещенные галогениды легко восстанавливаются, катодная область рабочих потенциалов не очень широка. Так, потенциал полуволны хлористого метилена в смеси диоксана (75%) с водой составляет -2,33 В по ПКЭ [4]. В анодной области реакция должна быть сложнее. Окисление алкилхлорида, очевидно, не исследовалось однако было показано, что окисление алкилиодида приводит к образованию иода и углеводорода [5]. После окисления амина в хлористом метилене образуется анодный продукт, который пахнет хлором и реагирует с ионами иода [б [c.47]

    Однако присоединить одно- и двугалоидопроизводные предельных углеводородов к галоидоолефинам не удалось. Так, хлористый метил и хлористый метилен не реагировали в присутствии хлористого алюминия с галоидоолефинами [c.11]

    Клиническая картина отравления хлористым метилом также своеобразна. По данным Г. Ю. Евтушенко (1966), симптомов раздражения слизистых оболочек глаз и верхних дыхательных путей, а также бокового положения у животных при воздействии хлористого метила не наблюдалось. В случае гибели в ближайшие 2—6 ч после окончания затравки из носа и рта выделялась пенистая жидкость. На вскрытии при макроскопическом исследовании легких Б одних случаях отмечено их увеличение и выделение из трахеи пенистой жидкости, в других — полное или долевое опеченение. При гибели животных в отдаленные сроки (2—6-й день) у многих из носа и рта выделялась слизистая кровянистая жидкость, а на вскрытии констатировалась пневмония. По скорости развития симптомов отравления у животных при воздействии изоэффективных концентраций хлорированных углеводородов на первом месте стоит хлористый метилен, затем хлороформ и четыреххлористый углерод (см. табл. 63). [c.169]

    ДЕНИЖЕ РЕАКТИВ, раствор HgSO< в разбавл, H2SO4. Примен. для обнаружения третичных спиртов, с к-рыми при нагрев, образует желтый или красный осадок. Такие же осадки дают олефины и сложные эфиры третичных спиртов. Реактив предложен Гж, Дениже в 1898. ДЕПАРАФИНИЗАЦИЯ, проводится с целью снижения содержания в нефт. фракциях высших (начиная с Сю) алиф. предельных углеводородов. Из-за сравнительно высоких т-р плавления последних ухудшаются эксплуатац. св-ва нефтепродуктов (дизельных топлив, смазочных масел и др.), получаемых на основе нефт, фракций. Д, фракций дизельного топлива и маловязких вакуум-днстиллятов осуществляют с иомощью карбамида (или тиокарбамида), образующего с нормальными парафинами клатраты. Нефт, кырье смешивают с водным или спиртовым р-ром карбамида (тиокарбамида), к смеси для снижения вязкости среды и улучшения массообмена добавляют р-ритель (изооктап, метилен-хлорид, бензин), а для ускорения образования клатрата — активатор (низший алиф, спирт, кетой). Отделение клатрата (отстоем, фильтрованием, центрифугированием и др.) и удаление легкокипящих компонентов приводят к снижению т-ры застывания нефтепродуктов. [c.151]


Смотреть страницы где упоминается термин Метилен из углеводородов: [c.114]    [c.167]    [c.102]    [c.124]    [c.63]    [c.15]    [c.278]    [c.12]    [c.214]    [c.80]    [c.47]    [c.282]    [c.15]    [c.37]    [c.180]    [c.183]    [c.519]    [c.278]    [c.452]    [c.1102]   
Химия карбенов (1966) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Метилен



© 2025 chem21.info Реклама на сайте