Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита металлов от коррозии внешним потенциалом

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]


    Особенно широкое применение в технике находит катодная поляризация (катодная защита), в результате которой потенциал сооружения смещается в отрицательную сторону, а скорость коррозии снижается. Катодная защита может быть осуществлена в двух вариантах с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) и путем применения протекторов из металлов с потенциалом более отрицательным, чем сталь. Такими металлами являются магний, цинк и алюминий. При присоединении протектора к трубопроводу образуется внутренний источник постоянного тока — гальванический элемент, катодом которого является стальной трубопровод, а анодом магниевый или цинковый протектор. [c.93]

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]

    В условиях возможного наступления пассивности (в присутствии окислителя и при отсутствии депассиваторов) анодная поляризация металла от внешнего источника постоянного электрического тока (см. с. 321) может вызвать наступление пассивного состояния при достижении определенного значения эффективного потенциала металла и тем самым значительно снизить коррозию металла. Этот эффект также находит практическое использование в виде так называемой анодной электрохимической защиты. [c.365]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых окисных пленок или солевых пленок, возникающих при растворении металлов. Образование окисных пленок — причина устойчивости многих металлов, например алюминия. Из рис. 96 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют [c.215]


    Метод определения полноты катодной защиты по поляризационному потенциалу на границе раздела фаз металл—грунт. При равенстве плотностей анодного и катодного токов без наложения внешнего тока на границе раздела фаз металл — грунт устанавливается электронейтральность. В этом случае равновесный потенциал металла при известной концентрации его ионов легко определяется из уравнения Нернста. Это положение и взято за основу экспериментального определения полноты катодной защиты тю размеру защитного потенциала, так как равновесный потенциал металла в собственной соли становится все менее благородным с уменьщением концентрации ионов железа. Грунтовые электролиты обычно вообще не содержат корродирующего металла или содержат в малом количестве, поэтому равновесный потенциал в них менее благороден, чем коррозионный потенциал. Плотность тока катодной поляризационной кривой осаждения железа очень мала и не оказывает влияния на коррозионный потенциал, а следовательно, на скорость коррозии. Частные реакции (катодная и анодная) при равновесном потенциале протекают с одинаковой скоростью, поэтому в раствор материальные частицы не переходят. Это значение потенциала очень важно установить при катодной защите, однако практически это сделать чрезвычайно сложно. Так как, во-первых, равновесный потенциал растворения железа в конкретных условиях никак не связан с коррозионным потенциалом, а защитный потенциал связан с этим потенциалом, поэтому критерий полноты катодной защиты по потенциалу на границе фаз металл—грунт почти лишен смысла. Из асимптотического вида анодной кривой видно, что достигаемое путем снижения потенциала уменьщение растворения железа становится все меньще, однако небольшие отклонения от точного значения потенциала становятся едва заметными. [c.119]

    Анодная электрохимическая защита металлов от коррозии— сравнительно новый и очень специфический метод. Он основан на переходе металла из активного состояния в пассивное вследствие смещения его потенциала при анодной поляризации от внешнего источника тока. [c.69]

    Высокий отрицательный потенциал магния делает его ценным материалом для протекторной защиты металлов от коррозии. Магниевые протекторы используются для защиты подземных и подводных трубопроводов, для внутренней защиты холодильников, конденсаторов, водонагревателей и других аппаратов химической промышленности, а также для защиты внешней обшивки кораблей. Для того чтобы предотвратить собственную коррозию и получить высокие токи, защищающие конструкцию, протекторы рекомендуется изготавливать из магния самой высокой степени чистоты. Примеси меди, железа и никеля снижают эффективность защитного действия протектора. [c.134]

    Катодная защита от коррозии осуществляется путем катодной поляризации металла до потенциала, при котором замедляется процесс его ионизации. Поляризация может производиться постоянным током от внешнего источника или путем контакта защищаемого изделия со специальным жертвенным электродом-протектором, имеющим высокий катодный потенциал (2п, А1, Mg). Последний вариант называется протекторной защитой. [c.56]

    Как известно, для защиты металла от коррозии при отсутствии напряжений успешно применяется электрохимическая защита. Она производится с помощью протектора, изготовленного из значительно менее благородного металла, т. е. имеющего значительно более отрицательный электродный потенциал, чем металл защищаемого объекта или анодных покрытий (см. VI—В), или при помощи катодной поляризации защищаемого объекта от внешнего источника тока. Благодаря электрохимической защите местные коррозионные пары на металле должны перестать работать и весь защищаемый объект должен сделаться катодным. Основы электрохимической защиты разработаны и описаны Г. В. Акимовым [1, 2] и Н. Д. Томашевым [151]. [c.179]

    Электрохимическая защита металлов от коррозии. Этот вид защиты основан на уменьшении скорости коррозии металлических конструкций путем их катодной или анодной поляризации. Наибольшее распространение нашла так называемая катодная защита металлов. В этом случае защищаемую металлическую конструкцию присоединяют или к отрицательному полюсу внешнего источника постоянного тока (т. е. в качестве катода) или к металлу, имеющему более отрицательный потенциал. Первый способ защиты металлов, осуществляемый подачей постоянного тока от внешнего источника, получил название катодной защиты, а второй осуществляемый путем присоединения защищаемой конструкции к электроду, обладающему потенциалом, более отрицательным, чем защищаемая поверхность, — протекторной защиты. [c.133]


    Но в последнее время возникло новое направление защиты металлов в таких окислителях, которые сами по себе пе способны вызывать пассивность. В гл. V было показано, что смещение потенциала активного металла в отрицательную сторону должно уменьшать скорость коррозии. Если потенциал становится отрицательнее равновесного в данной среде, то скорость коррозии должна стать равной нулю катодная защита, применение протекторов). Очевидно, что подобным же образом, но за счет анодной поляризации от внешнего источника электрической энергии можно перевести способный к этому металл в пассивное состояние и тем уменьшить скорость коррозии на несколько порядков. Расход электрической энергии при этом [c.250]

    Механизм защиты металлов от коррозии с помощью протектора аналогичен механизму катодной защиты (см. работу № 30) и сводится к ослаблению работы локальных анодов на поверхности защищаемого металла или к их превращению в катоды под влиянием катодной поляризации при присоединении протектора. Однако если при электрозащите защитная плотность тока (а следовательно, и степень защиты) зависит от разности потенциалов, налагаемой от внешнего источника постоянного тока, которая может регулироваться в широких пределах, то при защите с помощью протектора степень зашиты зависит от его электрохимических характеристик начального электродного потенциала, поляризуемости, величины поверхности, стабильности работы во времени и др. [c.203]

    Защита металлов от коррозии внешним потенциалом. При возникновении гальванических пар на отдельных участках сплава металла наиболее активный металл разрушается, переходя в ионное состояние. При этом на нем возникает некоторый отрицательный потенциал. Если на изделие наложить извне отрицательный потенциал, больший, чем развивает при работе коррозионной пары более активный металл, то коррозия прекратится. Это осуществляется методами протекторов и внешнего потенциала. [c.364]

    Электрохимическая защита. Электрохимическая защита металла от коррозии осуществляется либо поляризацией от внешнего источника тока, либо путем соединения с металлом (протектором), имеющим более отрицательный (или более положительный) потенциал, чем защищаемый металл. Электрохимическая защита применима только для оборудования, ра-ботающего в средах с высокой электропроводностью. Наиболее распространены два вида электрохимической защиты — катодная и протекторная. [c.87]

    Метод защиты металлических конструкций от коррозии при помощи протекторов относится к электрохимическим способам защиты, основанным на поляризации защищаемого металла (3. М.) и широко применяемым для защиты от коррозии в морской воде и нейтральных водных растворах. Поляризация достигается присоединением металлической конст укции к внешним источникам постоянного тока (анодная и катодная защита), или к металлу или сплаву — протектору, имеющему более отрицательный электродный потенциал, чем защищаемый металл. [c.239]

    Из рис. 188 видно, что при катодной поляризации электрода скорость выделения водорода возрастает, а скорость растворения металла уменьшается. Таким образом, при помощи катодной поляризации можно защитить металл от коррозии. Это явление называется про-тект-эффвктом и широко применяется при защите металлических конструкций. Катодная защита осуществляется или при помощи внешнего источника тока, или при помощи соединения защищаемого металла с другим металлом (протектором), имеющим более отрицательное значение равновесного потенциала. Часто для этой цели используют цинк и магний. [c.376]

    Смещение потенциала стали в отрицательную сторону от значения собственного стационарного потенциала при наложении внешнего катодного тока определяет защиту металла подземного трубопровода. Когда катодная поляризация (перенапряжение) возникает на металле при прохождении наложенного внешнего тока, растворение или ток коррозии уменьшается, в то время как скорость восстановления увеличивается. На закономерном снижении скорости растворения металлов по мере смещения их электродных потенциалов в отрицательном направлении в области потенциалов более отрицательных, чем стационарный потенциал, основан метод катодной зашиты металлов от коррозии. [c.101]

    Электрохимическая защита — это защита металла от коррозии, осуществляемая поляризацией от внешнего источника тока или соединением с металлом, имеющим более отрицательный или более положительный потенциал, чем у защищаемого металла. На подземных металлических [c.117]

    На закономерном снижении скорости растворения металлов по мере смещения их потенциалов в отрицательном направлении в области ф<фк основан метод катодной защиты металлов от коррозии. Метод предусматривает смещение потенциала металла с помощью внешнего катодного тока или путем присоединения его к другому, более электроотрицательному, металлу (протектору) до значений, соответствующих защитным потенциалам [3 4], то есть таким, при которых скорость растворения не превышает некоторой заданной величины. [c.10]

    Поверхность металла изолируют от коррозионной среды путем покрытия их другими металлами, лаками, красками, эмалями, битумами, пластмассами, маслами. На некоторых металлах формируют окисные, фосфатные, сульфидные пленки, которые затем пропитывают маслами или другими гидрофобными наполнителями. Металлические покрытия делятся на катодные и анодные. К катодным относят покрытия, которые при коррозии являются катодом. Это металлы, у которых равновесный потенциал больше, чем у защищаемого металла. Так, например, медное покрытие на цинке является катодом, так как медь растворяется при более положительном потенциале, чем цинк. В гальванической паре медь — цинк медь является катодом. К анодным относятся покрытия, являющиеся в паре с защищаемым металлом анодом (цинковое покрытие на л<елезе). При этом при повреждении цинкового покрытия потенциал коррозии железа окажется отрицательнее равновесного потенциала л<елеза. Цинк будет растворяться, а на железе будет протекать катодная реакция. При этом железо не растворяется. Защита электрическим током делится на катодную и анодную защиту. В первом случае потенциал защищаемого металла смещают от потенциала коррозии до равновесного потенциала данного металла. При равновесном потенциале металла коррозионный ток равен нулю. Для этого изделия катодно поляризуют внешним током. [c.229]

    Покрытия, сделанные из металлов, имеющих электродный потенциал выше, чем у железа, имеют общее название анодных. Их действие связано не только с механической защитой поверхностей, но и с электрохимическим предупреждением коррозии, как было видно на примере с цинком. В отличие от них, покрытия из других металлов (катодные) способны защищать поверхность черных металлов только за счет механической изоляции от внешней среды. [c.25]

    Как и электрохимические методы, црименяемые для защиты от коррозии внешним током, принципы конструирования оборудования из пассивщзущихся металлов в электрохимических производствах основаны на создании условий, при которых предотвращается смешение потенциала металла конструкции до значения потенциала активации. Это достигается за счет выбора металла с соответствующими электрохимическими характеристиками применения средств, цредотвращающих снижение потенциала анодной актавации металла (в условиях воздействия внешнего анодного тока) регулирования гесжетрических параметров конструкции в поле внешнего тока.Рас-смотрены практические меры осуществления указанных условий при конструировании металлического оборудования. [c.145]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Из поляризационной диаграммы медно-цинкового элемента (рис. 4.2) видно, что если за счет внешней поляризации сместить потенциал цинка до потенциала анода при разомкнутой цепи, то потенциал обоих электродов будет одинаков и цинк не будет корродировать. На этом основана катодная защита металлов — эффективный практический способ свести коррозию к нулю (этот вопрос рассмотрен в гл. 12). Внешний ток прилагают к корроди- [c.68]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    Эффективным средством защиты металлов от коррозии являются такие электрохимические методы, как метод протекторов и метод внешнего потенциала. Методом протекторов (защитников) называют такой прием, когда к металлической детали и узлу деталей припаивают или присоединяют металлическим проводником кусок металла, электродный потенциал которого ниже, чем электродный потенциал защищаемого металла. Этим создаются условия для образования гальванического элемента, в котором более активный металл, являясь анодом, окисляется и защищает деталь до своего полного разрушения. По методу внешнего.потенциала защищаемый металл подсоединяют к отрицательному полюсу источника посто5 нного тока, тем самым превращая его в катод. На катоде восстанавливается окислитель из окружающей среды, получая электроны не от металла, а от источника тока. [c.198]

    Электрохимическая защита металлов от коррозии. Коррозия - самопроизвольный процесс разрушения металлов под влиянием внешней среды, который возвращает в окисленное состояние металл, с трудом восстановленный из руд. При коррозии происходит гетерогенное окисление металла, сопровождаемое восстановлением какого-либо компонента среды, чаще всего - воды до водорода или растворенного кислорода до воды. Если среда электро-проводна, как, например, поверхностная пленка влаги в контакте с захрязненной атмосферой, то этот процесс носит электрохимический характер и мы имеем дело с электрохимической коррозией (рис. 16.9). Железо (или сталь), которое особенно страдает от коррозии, сначала электрохимически окисляется до иона Ее (напомним, что для этого достаточно, чтобы окислитель имел стандартный восстановительный потенциал выше -0,44 В), переходящего далее под действием воздуха и воды в соединения железа(П1) -ЕеО(ОН) и др. [c.222]

    Защитные покрытия на органической основе. Лакокрасочные покрытия являются самым распространенным методом защиты металлов от коррозии. Применяющиеся для этой цели материалы чрезвычайно разнообразны поливинилбутиралевый лак, глифта-левые лаки с добавкой хроматов (цинковый крон) и без хроматов, битумные лаки, бакелитовый лак, нитрокраски, масляные краски с различными пигментами (свинцовый сурик, цинковые белила и т. п.) и без пигментов и др. Сущность защиты металлов от коррозии лакокрасочными покрытиями сводится не только к механической изоляции поверхности металлического изделия от внешней среды, но и к смещению потенциала анодных участков металла в положительную сторону, из-за чего термодинамические возможности процесса коррозии резко уменьшаются. [c.314]

    Роль покрытия как средства защиты от коррозии в большинстве случаев сводится к изоляции металла от внешней среды, чтобы препятствовать деятельности микроэлементов на его поверхности. Это достигается сплошностью и беспористостью (непроницаемостью) покрытий и особенно таких, которые по отношению к металлу защищаемого изделия имеют положительный потенциал. Такие покрытия в ряде случаев защищают металл от коррозии лишь механически. При этом образование не-сплошного (проницаемого для внешней среды) покрытия приводит к возникновению гальванопары, в которой покрытие является катодом, а изделие — анодом. В результате работы такой гальванопары покрытие часто способствует коррозии металла изделия. [c.120]

    Уменьшить скорость коррозии (/а) можно смещением потенциала металла,- например, от ор. 1 до достаточно низкого иотеп-цнала в активной области (например, до , точка Л ) или в область пассивности (например, до ,, точка ). Если сдвиг потенциала в отрицательном направлении (к 1) осуществляется путем катодной поляризации от внешнего источника, такая защита называется катодной. Смещение потенциала в область пассивности (к 2) путем анодной поляризации от внешнего источника называется анодной защитой. Если катодную поляризацию осуществляют путем соединения с протектором, имеющим более отрицательный потенциал, чем защищаемый металл, то такая защита называется катодно-протекторной (или просто протекторной), в отличие от анодно-протекторной защиты, когда анодная поляризация металла до потенциалов пассивности осуществляется путем соединения с протектором, имеющим более положительный потенциал, чем защии аемый металл. При анодной защите от общей коррозии потенциал необходимо удерживать в пределах пассивной области СО, протяженность которой в большинстве случаев достаточно велика. Выход за пределы этой области при анодной защите недопустим, поскольку может привести к значительному 256 [c.256]

    Второй метод — наложение на защищаемый металл потенциала от внешнего источника тока, для того чтобы потенциал его поверхности был более отрицательным, чем °. При этих условиях металл не будет корродировать. Энергию, требуемую для защиты от коррозии, для какого-либо частного случая можно вычислить, пользуясь рис. К. 8. При втором методе защиты электроны, потребляемые в катодном процессе, поставляются не корродирующим металлом, а внешним источником тока. Величину защитного потенциала (плотности тока) находят, экстраполируя кривую б на рис. К. 8 до точки с потенци 1лом ""(гп +гп). Соответствующая данному потенциалу плотность тока (точка А) — это минимальный ток, который должен протекать между защищаемым металлом и вторым (инертным) электродом и обеспечивать такое электронное состояние металла, чтобы металл практически не растворялся. [c.82]

    Практическое использование электрохимических принципов защиты от коррозии требует знания кинетики анодного и катодного процессов на металлах и влияния на нее внутренних и внешних факторов в широкой области потенциалов между крайними значениями равновесных потенциалов термодинамически возможных в системе металл — раствор анодных и катодных реакций. Как следует, например, из рис. 1, при протекании процесса в области перепассивации (фв), когда для защиты от коррозии целесообразно смещать потенциал коррозии в сторону отрицательных значенйй, не любое торможение катодной реакции приведет к подавлению коррозионного процесса (см. кривые ф 1 и ф°/1/). Без знания границ устойчивого пассивного состояния защитить металл невозможно. [c.10]

    Катодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к отрицательному полюсу внещнего источника постоянного тока (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно. При таком пропускании тока поверхность защищаемого металла поляризуется катодно ее потенциал при этом смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на дополнительном электроде—аноде. Для полного прекращения электрохимической коррозии металла его нужно катодно заполяризо-вать до значения обратимого потенциала ( Vме)обр, а сплав — до значения обратимого потенциала его наиболее отрицательной анодной составляющей. Катодную защиту внешним током щироко применяют как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений — трубопрово- [c.241]

    Анодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к положительному полюсу внешнего источника постоянного тока (т. е. в качестве анода), а к отрицательному полюсу присоединяют дополнительный электрод, поляризуемый катодно. При таком пропускании тока поверхность защищаемого металла поляризуется анодно ее потенциал при этом смещается в положительную сторону, что обычно приводит к увеличению электрохимического растворения металла однако при достижении определенного значения потенциала может наступить пассивное состояние металла (что наблюдается при отсутствии депассиваторов в коррозионной среде и приводит к значительному снижению скорости электрохимической коррозии металла), для длительного сохранения которого требуется незначительная плотность анодного тока. На дополнительном электроде — катоде при этом протекает преимущественно катодный процесс. При больших плотностях анодного тока возможно достижение значений потенциала, при которых наступает явление перепассивации (транспассивности)— растворение металла с переходом в раствор ионов высшей валентности, в результате чего образуются растворимые или неустойчивые соединения (л<елезо и хром образуют ионы Ре04 и СГО4 , в которых Ре и Сг шестивалентны), что приводит к нарушению пассивного состояния и увеличению скорости растворения металла. Анодная защита металлических конструкций от коррозии уже нашла применение в химической, бумажной и других отраслях промышленности. [c.242]


Смотреть страницы где упоминается термин Защита металлов от коррозии внешним потенциалом: [c.363]    [c.196]    [c.36]    [c.318]    [c.477]    [c.479]    [c.536]    [c.55]    [c.47]   
Смотреть главы в:

Химия -> Защита металлов от коррозии внешним потенциалом

Химия -> Защита металлов от коррозии внешним потенциалом

Химия -> Защита металлов от коррозии внешним потенциалом




ПОИСК





Смотрите так же термины и статьи:

Защита внешним потенциалом

Защита металлов от коррозии

Защита от коррозии

Коррозия металлов

Коррозия металлов коррозии

Потенциал внешний

Потенциалы металлов



© 2025 chem21.info Реклама на сайте