Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий молибденом и хромо

    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]


    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    Алюминий (79). Барий (79). Бериллий (79). Бор (80). Бром (80). Ванадий (80). Висмут (80). Водород (81). Вольфрам (81). Галлий (81). Гафний (81). Гелий (81). Германий (81). Гольмий (82). Диспрозий (82). Европий (82). Железо (82). Золото (83), Индий (83). Иридий (84). Иод (84). Иттербий (84). Кадмий (84). Калий (85). Кальций (85). Кобальт (85). Кремний (86). Лантан (86). Литий (86). Лютеций (86). Магний (86). Марганец (87). Медь (87). Молибден (88). Мышьяк (88). Натрий (89). Неодим (89). Никель (89). Ниобий (90). Олово (90). Осмий (90). Палладий (90). Платина (90). Плутоний (92). Полоний (92). Празеодим (92). Радий (92). Рений (92). Родий (92). Ртуть (92). Рубидий (93). Рутений (93) Самарий (93). Свинец (93). Селен (93). Сера (94). Серебро (94) Скандий (94). Стронций (94). Сурьма (94). Таллий (95). Тан тал (95). Теллур (95). Тербий (95). Титан (95). Торий (96) Туллий (97). Углерод (97). Уран (97). Фосфор (97). Хром (97) [c.126]

    Одной из известных качественных реакций для открытия рения является проба на перл буры. При нагревании в восстановительном пламени перл буры окрашивается рением в черный цвет, который исчезает в окислительном пламени вследствие окисления рения до Re(VII). Используют также перл соды, который в окислительном пламени в присутствии рения окрашивается в желтый цвет. Этим методом можно определять до 0,015 мг Re [1266]. Метод пригоден для обнаружения рения в сплавах при его содержании >5% вольфрам и молибден не мешают, а хром, рубидий и осмий мешают обнаружению рения- [c.69]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Проследим за изменением коксообразующей и регенерационной активности металлов в зависимости от их положения в периодической системе элементов Д. И. Менделеева. Если рассмотреть элементы IV периода, то металлы, расположенные в начале периода (калий и кальций), способствуют уменьшению коксообразования при незначительном их влиянии на регенерацию катализатора. Металлы же, расположенные в средней части периода (хром, марганец, кобальт, молибден, никель, медь), усиливают образование кокса и некоторые из них (хром, железо) весьма сильно катализируют его сгорание. Влияние элементов главной подгруппы II группы (бериллий, магний, кальций, стронций, барий) на результаты крекинга и регенерации катализатора одинаково. Элементы главной подгруппы I группы (литий, натрий, калий, рубидий, цезий) почти одинаково влияют на коксообразование, но легкие металлы (литий и натрий) резко усиливают регенерационную способность алюмосиликатного катализатора. Это позволяет предсказывать влияние металлов, нанесенных на алюмосиликатный катализатор, на результаты каталитического крекинга. Элементы главных подгрупп I и II групп вызывают уменьшение образования кокса и снижение активности катализатора вследствие нейтрализации кислотных центров. Легкие элементы [c.54]

    Водород Гелий Неон. . Аргон. Криптон Ксенон. Радон Хлор. . Молибден Вольфрам Ниобий. Тантал. Титан Железо. Никель, Марганец Хром. . Стронций Барий Литий. Натрий. Калий. Рубидий Цезий.  [c.97]

    Алюминий (А1) Барий (Ва). . Берилий (Ве) Ванадий (V). Висмут (В1). Вольфрам ( ) Железо (Ре). Золото (Аи). Иридий (Лг). Кадмий (Сс1). Калий (К). . Кальций (Са) Кобальт (Со) Кремний (81). Литий (Ь1). . Магний (Mg) Марганец (Мп) Медь (Си). . Натрий (Ыа). Никель (N1). Молибден (Мо) Ниобий (Nb). Олово (Зп). Осмий (Оз). Палладий (Р(1) Платина (Р1) Ртуть (Hg). Рубидий (НЬ) Свинец (РЬ). Серебро (Ag) Стронций (8г) Сурьма (5Ь). Тантал (Та). Титан (Т1). . Торий (ТЬ). Хром (Сг). . Цезий (Сз). Цинк (2п). . Цирконий (Zr) Теллур (Те).  [c.186]

    Барий. Бор. . Ванадий Г аллий Железо Индий Кадмий Калий. Кальций Кобальт Магний Марганец Медь. Молибден Натрий Никель Рубидий Свинец Серебро Стронций Т аллий Титан. Уран. Хром. Цезий.  [c.586]

    Сравним еще раз полимеры с металлами. Какие металлы используются в технике В последнее время технический прогресс вовлек в дело многие элементы таблицы Менделеева, которые находились в резерве. И все же железо, медь, алюминий, цинк, олово, свинец, никель, хром, кобальт, титан, молибден, вольфрам, цирконий, тантал, ну еще золото, серебро, платина, рубидий, цезий. Можно учесть еще редкоземельные-и все-таки наберется не более 30-40 разных металлов. [c.26]

    Магний Марганец Медь. Молибден Мышьяк Натрий Никель Неон. Олово. Ртуть. Рубидий Свинец Сера Серебро Стронций Титан. Углерод Фтор Хлор Хром Цезий Цинк [c.235]

    При транспортировке, перекачках и храпении все топлива обязательно соприкасаются с металлами. Кроме того, в самих топливах обнаружены многие металлы в растворенном состоянии В настоящее время в нефтях и нефтепродуктах найдены железо, никель, ванадий, алюминий, натрий, кальций, медь, магний, марганец, барий, кремний, хром, олово, свинец, молибден, стронций, кобальт, бериллий, литий, рубидий, серебро, висмут, титан, цинк, калий, золото и др. Таким образом, в условиях хранения и применения, окисление топлив всегда происходит в контакте с металлами. [c.309]


    Литий, рубидии, калий, цезий, радии, барий, стронций, кальций, натрий, лантан, магний, плутоний, тории, нептуний, бериллий, уран, гафнии, алюминий, титан, цирко НИИ, ванадий, марганец, ниобий, хром цинк, галий, железо Кадмий, индий, таллий, кобальт, никель, молибден, олово, свинец. [c.431]

    Алюминий Барий. Бериллий Висмут. Вольфрам Железо Золото. Кадмий. Кальций Калий. Кобальт Литий. Магний Марганец Медь. . Молибден Натрий. Никель. Олово. Палладий Платина Рубидий Свинец. Серебро Стронций Сурьма Тантал. Торий. Углерод Уран. . Хром. . Цезий. Цчнк. . Цирконий [c.355]

    К структурному типу вольфрама (тип ОЦК-металлов) относятся тугоплавкие металлы хром, ванадий, молибден, ниобий, тантал, р-кобальт а-железо (ниже 900° и выше 1400°С, а в области 910°—1400° С железо имеет ГЦК-струк-туру), титан, цирконий, гафнпй, щелочные элементы — литий, натрий, калий, рубидий, цезий, щелочноземельные — кальций, стронций, барий, актиниды — уран, нептуний, плутоний. Из интерметаллических соединений в [c.160]

    Тритий (СВ( ГН)ДИЫЙ Бериллий Углерод Фтор Натрий Фосфор Сера Хлор Аргон Калий Кальций Скандий Скандий Ванадий Хром Марганец Железо Железо Кобальт Никель Медь Цинк Галий Германий Мышьяк Рубидий Стронций Стронций-иттрий Иттрий Цирконий-ниобий Ниобий Молибден Технеций Рутений-родий Рутений. Рутений-родий [c.441]

    Аналогичная картина наблюдается в изменении кристаллических структур элементов пятого периода. Рубидий обладает ОЦК структурой. Низкотемпературная модификация стронция изоморфна а-кальцию. Элемент Illa подгруппы — индий обладает гранецентрированной тетрагональной структурой, близкой к ГЦК решетке алюминия. Гранецентри-рованная тетрагональная структура индия является переходом к объемноцентрированной тетрагональной структуре р-олова. В ряду сурьма— йод, структуры которых возникают путем образования направленных двухэлектронных связей, происходит окончательная потеря металлических свойств. Структуры 40-нереходных металлов от иттрия до кадмия сходны со структурами Зй-переходных металлов. Иттрий, цирконий, ниобий и молибден изоморфны, включая полиморфные модификации, соответственно скандию, титану, ванадию и хрому, и только гексагональные плотные упаковки технеция и рутения отличаются от структур марганца и железа. Родий, палладий и серебро имеют такие же гранецентрированные решетки, как р-кобальт, никель, медь, а кадмий — такую же решетку, как цинк. [c.193]

    Во всех трех больших периодах при переходе от металла I группы (калия, рубидия и цезия) к металлам VI группы (хрому, молибдену и вольфраму) наблюдается сильное уменьшение межатомных расстояний и диаметров атомов, соответствующее предлагаемой гипотезе о полном отделении всех валентных электронов и обнажении р -оболочек ионов. Чем больше избыточный заряд таких ионов с одинаковыми электронными конфигурациями, тем, естественно, сильнее притяжение р-электронов к ядру и тем меньше диаметр этих ионов и короче расстояния между ними. Этому сокращению расстояний способствует и повышение электронной концентрации. Атомные диаметрых-мар-ганца (плотная кубическая модификация) и б-марганца (объемноцентрированная кубическая модификация) резко увеличены по сравнению с соответствующим диаметром атомов хрома и железа, что вновь указывает на пониженную степень ионизации атомов марганца (1- -). Железо, кобальт и никель имеют меньшие атомные диаметры вследствие того, что они двухкратно ионизированы. От железа к никелю межатомные расстояния уменьшаются в связи с сокращением размеров внешней электронной оболочки. Уменьшение межатомного расстояния продолжается в VII и VIII группах в связи с переходом от объемноцентрированной к плотнейшим упаковкам и достигает минимума у рутения и осмия. Межатомные расстояния от рутения к палладию и от осмия к платине слегка увеличиваются вследствие уменьшения электронной концентрации от 4 до 2 элЫтом и соответствующего понижения энергии межатомной связи. Далее к побочным металлам второй группы (цинку, кадмию и ртути) межатомные расстояния и атомные диаметры продолжают возрастать в связи с уменьшением концентрации свободных электронов. Атомные радиусы [c.233]

    Изменение атомных радиусов и межатомных расстояний при 20° закономерно связано с изменением характеристик механической жесткости и прочности металлов при той же температуре. При высоких температурах вследствие разных коэффициентов расширения максимумы жаропрочности перемеш аются на хром, молибден и вольфрам, которые обладают максимальными температурами плавления. Механическая жесткость металлических решеток может быть характеризована упругими модулями. Модули нормальной упругости Е, модули сдвига 6 и объемные модули К металлов больших периодов при 25° представлены на рис. 104. С возрастанием числа валентных электронов от одного до шести, т. е. от ш елочных металлов к хрому, молибдену и вольфраму, упругие модули сильно увеличиваются, причем переход от IV к V группе приводит к сравнительно небольшому повышению модулей. В четвертом периоде они достигают максимального значения у хрома, сильно понижаются при переходе к марганцу, сохраняют почти постоянное значение у келеза, кобальта, никеля, а затем резко падают при переходе к меди и цинку. В пятом и шестом периодах упругие модули сильно возрастают от рубидия и цезия к молибдену, вольфраму и далее продолжают увеличиваться к рутению и осмию, а затем уже резко понижаются при переходе к палладию, платине и метал-.тгам I и II побочных групп. [c.234]

    И ЭТО заключение действительно подтверждается разительным образом ВО всей совокупности свойств элементов, принадлежащих к четным и нечетным строкам или рядам. Элементы четных рядов образуют наиболее энергические основания, и притом основная способность для них возрастает в данной группе по мере увеличения атомного веса. Известно, что цезий более электроположителен и образует основание более энергическое, чем рубидий и калий, как показал это Бунзен в своих исследованиях этого металла относительно бария, стронция и кальция это известно каждому по давнему знакомству с соединениями этих элементов. То же повторяется и в такой же мере при переходе в четвертой группе от иттрия к церию, цирконию и титану, как видно на таблице, а также при переходе от урана к вольфраму, молибдену и хрому. Эти металлы четных рядов характеризуются еще и тем, что для них неизвестно ни одного металлоорганического соединения, а также ни одного водородистого соединения, тогда как металлоорганические соединения известны почти для всех элементов, расположенных в нечетных рядах. Такое различие элементов четных и нечетных рядов основывается на следующем соображении элементы нечетных рядов, относительно ближайших элементов той же группы, но принадлежащих к четным рядам, оказываются более кислотными, если можно так [246] выразиться, а именно, натрий и магпий образуют основания менее энергические, чем калий и кальций серебро и кадмий дают основания еще менее энергические, чем цезий и барий. В элементах нечетных рядов основные способности различаются гораздо менее при возрастании атомного веса, чем в элементах четных рядов. Окись ртути, правда, вытесняет окись магния из растворов, окись талия, конечно, образует основание более энергичное, чем окись индия и алюминия, но все же это различие в основных свойствах не столь резко, как между барием и кальцием, цезием и калием. Это особенно справедливо для элементов последних групп из нечетных рядов. Кислоты, образованные фосфором, мышьяком и сурьмою, а также серою, селеном и теллуром, весьма сходны между собою при одинаковости состава только прочность высших степеней окисления с возрастанием атомного веса здесь, как и во всех других рядах, уменьшается, а кислотный характер изменяется весьма мало. [c.757]

    Водород Гелий. Литий. Бериллий Бор. . Углерод Лзот. . Кислород Фтор. . Неон. . Натрий. Магний. Алюминий Кремний Фосфор. Сера. . Хлор. . Аргон Калий. Кальций Скандий Титан. Ваналип Хром. . Марганец Железо. Кобальт Никель. Медь. . Цинк. . Галлш . Германий Мышьяк Селеп Бром. . Криптон Рубидий Стронций Иттрий. Цирконий Ниобий. Молибден Т ехнеций Рутений Родий [c.33]

    Кислород. 4 — Азот, 5 — Фтор, 6 — Хлор, 7 — Бром. 8 — Иод, 9 — Сера, 10 — Селен, И — Теллур. 12 — Полоний, 13 — Бор, 14 — Углерод, 15 — Кремний, 16 — Фосфор. 17 — Мышьяк, 18 — Сурьма, 19 — Висмут, 20 — Литий, 21 — Натрий. 22 —Калий, 23 — Аммоний, J4 — Рубидий, 25 — Це у1й, 26 — Бериллий, 27 — Магний, 28 — Кальций. 29 — Стронций, 30 — Барий. 31 — Радий, 32 — Цинк, 33 — Кадмий, 34 — Ртуть, 35 — Алюминий. 36 — Г аллий, 37 — Индий, 38 Таллий, 39 — Редкие земли, 40 — Актиний, 41 — Титан. 42 — Цирконий, 43 — Гафний, 44 — Торий, 45 — Германий, 46 — Олово,47 — Свинец, 48 — Ванадий, 49 — Ниобий, 50 — Тантал, 51 — Протактиний, 52 — Хром, 53 — Молибден, 54 — Вольфрам, 55 — Уран, 56 — Марганец, 57 — Никель, 58 — Кобальт, 59 — Железо, 60 — Медь. 61 — Серебро, 62 — Золото, 63 — Рутений, 64 — Родий, 65 — Палладий, 66 — Осмий. 67 — Иридий, 68 — Платина, 69 — Технеций (Мазурий), 70 — Рений, 71 — Трансурановые элементы. [c.125]


Смотреть страницы где упоминается термин Рубидий молибденом и хромо: [c.168]    [c.125]    [c.107]    [c.6]    [c.181]    [c.340]    [c.125]   
Успехи химии фтора (1964) -- [ c.103 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте