Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал, ниобий, ванадий, молибден, вольфрам

    По магнитным свойствам различают диамагнитные металлы (выталкиваемые из магнитного поля) и парамагнитные (втягиваемые магнитным полем). Диамагнитны медь, серебро, золото, цинк, кадмий, ртуть, цирконий. Парамагнитными считают скандий, иттрий, лантан, титан, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, рутений, радий, палладий, осмий, иридий, платину. Железо, кобальт и никель обладают ферромагнетизмом, т. е. особенно высокой магнитной восприимчивостью. [c.257]


    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    ТАНТАЛ, НИОБИЙ, ВАНАДИЙ, МОЛИБДЕН, ВОЛЬФРАМ [c.295]

    Тантал, ниобий, ванадий, молибден, вольфрам [7, 27, 51, 132, 220, 229] часто объединяют в группу тугоплавких металлов, так как их температура плавления заметно превышает температуру плавления железа (см. ниже)  [c.295]


    Исследовано коррозийное действие воды и воздуха на многочисленные сплавы урана. Более или менее подробно изучены системы из урана со следующими элементами натрий калий, медь, серебро, золото, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий, церий, лантан, неодим, титан, германий, цирконий, олово, торий, ванадий, ниобий, тантал, висмут, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина. В большинстве случаев полная фазовая диаграмма еще не разработана. Недавно опубликованы описания систем уран—алюминий и уран—железо [11], уран—вольфрам и уран—тантал [12], уран—марганец и уран—медь [13]. g g [c.152]

    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    В чугунах и сталях определяют углерод (графит), марганец, никель, кобальт, медь, хром, алюминий, кремний, фосфор, серу и мышьяк, а также редкие металлы — титан, ванадий, молибден, вольфрам, цирконий, ниобий, тантал и др. [c.129]

    Черные сплавы (различные сорта сталей). В качестве наиболее обычных составных частей сталей можно указать марганец, никель, хром, ванадий, молибден, вольфрам, алюминий, медь. В качестве более редких составных частей можно указать титан, цирконий, селен, теллур, кобальт, ниобий, тантал, бор. [c.225]

    Титан, цирконий, молибден, вольфрам, тантал, ниобий, ванадий и гафний как технические материалы. [c.244]

    Наибольшим сродством к кислороду отличаются иттрий, торий, гафний, уран, скандий, щелочно- и редкоземельные элементы, титан, цирконий, алюминий, литий. При литье черных, цветных и тугоплавких металлов они действуют как раскислители (восстановители), а на воздухе в состоянии тонкой дисперсности обладают пирофорными свойствами. К металлам с несколько меньшим, но все же значительным сродством к кислороду относятся ванадий, тантал, ниобий, молибден, вольфрам, хром, марганец, цинк, натрий, железо. Слабым сродством к кислороду характеризуются медь, никель, кобальт, свинец, олово, кадмий, висмут, сурьма. [c.192]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    При электролизе сернокислых растворов солей на ртутном катоде выделяются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром , молибден, свинец, висмут, селен, теллур, ртуть, золото, платина,, иридий, родий, палладий. Остаются полностью в растворе алюминий, бериллий, бор, тантал, ниобий, вольфрам, редкоземельные элементы, титан, ванадий, цирконий и др. Рутений, мышьяк и сурьма количественно не выделяются. [c.138]

    К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспоз1П1ИИ в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е при наличии на поверхности отложений. [c.160]

    Таким образом, в книге рассматриваются следующие редкие металлы литий, рубидий, цезий, бериллий, скандий, иттрий, лантан и другие элементы группы редких земель, торий, уран, галлий, индий, таллий, германий, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам и рений — всего 44 металла, а также селен и теллур. [c.16]

    Возможность разряда металлов из водных растворов затрудняется по мере увеличения атомного номера в одной и той же группе периодической системы, хотя нормальный электродный потенциал становится положительнее. Так, хром выделяется из водных растворов самостоятельно с выходом по току до 25%, в то время как вольфрам и молибден осаждаются лишь в виде сплавов. Выход по току при осаждении марганца составляет до 90%, в то время как выход по току при осаждении рения может быть равен 28%. Электроосаждение из водных растворов переходного металла марганца, имеющего весьма электроотрицательный электродный потенциал, связано с заполнением -электронных уровней электронами с непараллельными спинами и это обусловливает относительно невысокое перенапряжение при его выделении. Нормальные потенциалы тантала, ниобия и ванадия близки к потенциалу марганца и цинка, однако из водных растворов осадить их в заметных количествах не удалось. Это обусловливается более высоким перенапряжением разряда этих металлов и низким перенапряжением водорода на них. Получение.покрытий переходными металлами III—V групп возможно из неводных сред или расплавленных солей, о чем будет сказано в следующих главах. [c.80]


    Металлы IV группы (титан, цирконий, гафний) деформируются при относительно низкой температуре, металлы V группы (ванадий, ниобий и тантал) наиболее пластичны и могут деформироваться даже при комнатной температуре. Металлы VI и VII групп (хром, молибден, вольфрам и рений) отличаются низкой пластичностью при комнатной температуре. Температура их горячей обработки давлением находится в пределах 1400—2000° С. Переход из хрупкого в пластичное состояние (ПО ударной вязкости) для вольфрама находится в пределах 400—500° С, хрома 150—200° С и молибдена 50—150° С. [c.242]

    Металлургия цветных металлов. II. Цирконий, гафний, ванадий, ниобий, тантал, хром, молибден, вольфрам. [c.11]

    Без контролирования потенциала в среде 0,1 н. серной кислоты осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий, палладий. С трудом выделяется марганец. Рутений, мышьяк и сурьма количественно не осаждаются. Остаются полностью в растворе алюминий, бор, бериллий, тантал, ниобий, вольфрам, редкоземельные элементы, титан, цирконий, уран, ванадий и плутоний. Некоторые элементы переходят при этом из высшей степени окисления в низшую, например титан (IV) восстанавливается до титана (III), уран (VI) до урана (III). [c.240]

    Элементы, повышающие стабильность < -фазы. Группу р-стабилизаторов можно разбить на две подгруппы. Элементы первой подгруппы, в которую входят хром, марганец, железо, никель, свинец, бериллий, кобальт при достаточно низкой температуре вызывают эвтектоидный распад р-фазы. Эти элементы называют -эвтектоидными стабилизаторами. При легировании титана элементами второй подгруппы, к которой относятся ванадий, молибден, ниобий, тантал, вольфрам, р-рас- [c.9]

    Катализаторы, кроме кобальта и железа, содержат также металлы от V до VIII группы периодической системы Элементов — ванадий, молибден, вольфрам, ниобий, тантал, хром, марганец или их окиси свинец, олово, цинк, кадмий и твердые окиси неметаллов V группы (фосфор, мышьяк, сурьма) катализаторы обрабатывают водородом при 200°, а также сероводородом, селеноводоролом, сероуглеродом, ио-дистым водородом, например активный уголь пропитывают молибдатом аммония, азотнокислым свинцом и фосфорной кислотой и обрабатывают при 300° сероводородом или уголь пропитывают вольфраматом аммония, нитратом кобальта и пятиокисью сурьмы и обрабатывают сероводородом при 350° наконец, уголь можно пропитывать ванадатом аммония, азотнокислым кобальтом и фосфорной кислотой и нагревать при 350° с водородом и сероуглеродом в катализаторе может также содержаться окись урана [c.359]

    БЕРЙЛЛИЯ СПЛАВЫ — сплавы на основе бериллия. Относятся к легким сплавам. В пром. масштабе впервые получены в середине 20 в. в США и Германии. Поскольку технически чистый бериллий — хрупкий металл, сплавы легируют, повышая их пластичность. По степени растворимости в бериллии легирующие элементы подразделяют на малорастворимые (алюминий, кремний, бор и др.), слаборастворимые (углерод, азот, молибден, вольфрам, цирконий, тантал, ниобий, ванадий, хром, магний и др.) и хорошо растворимые (никель, железо, кобальт, медь, платина). В зависимости от характера упрочнения бериллиевой фазы (твердорастворное или дисперсное) различают Б. с. малодегированнце [c.134]

    Доведение анализа до конца в ходе синтеза было связано с достройкой незаверщен ных ранее групп и образованием новых групп, из которых можно было бы строи гь периодическую систему элементов. Так, Менделеев впервые объединил ниобий и тантал с ванадием, молибден и вольфрам с хромом. Особенно интересна в этом отношении его работа над созданием будущей VIII группы периодической системы. Семейства железа, платины и палладия до тех пор никак не объединялись между собой. В ходе составления своей системы Менделеев поставил их сначала на различных ее концах. Затем он обнаружил, что между этими семействами есть какая-то внутренняя связь поэтому для того, чтобы решить всю задачу, он на время прервал работу над всей системой в целом и предварительно занялся выяснением связи между названными тремя семействами раскрыв связь между ними, он тем самым довел анализ в этой области исследования до конца и образовал сначала особую группу из этих трех семейств и примыкающих к ним элементов, а потом подключил эту группу, как уже готовую, к своей системе (см. фотокопию III). [c.86]

    Титан почти или совершенно не взаимодействует со щелочными, щелочноземельными и редкоземельными (кроме скандия) металлами, т. е. не образует с ними ни соединений, ни твердых растворов, С остальными металлами титан взаимодействует, однако характер этого взаимодействия с разными металлами различен металлы, яьл.чющиеся аналогами титана и ближайшими его соседями по периодической системе, а именно цирконий, гафний, скандии, ванадий, ниобий, тантал, а также молибден и вольфрам, не образуют с титаном соединений, [го образуют непрерывные ряды твердых растворов другие металлы дают с титаном интерметалличе-ские соединения и ограниченные твердые растворы. [c.263]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    С фенилфлуороном реагируют также титан, цирконий, гафний, олово ( V), ниобий, тантал, сурьма (III), теллур, молибден, вольфрам. Окислители ванадий (V),xpoM (VI), марганец (VII) и церий (IV) окисляют реагент. Поны галлия и мышьяка в кислых раствора.ч не реагируют с фенилфлуороном. Не мешают определению фторид (<1 м-г в 10 мл) и железо (III) (100 мкг в 10 мл). [c.381]

    Для обсуждения некоторых аспектов химии кислородных соединений переходных металлов удобно объединить 6 элементов титан, ванадий, ниобий, молибден, вольфрам и рений. Можно сделать следующие обобщения. Диагональное структурное соответствие, о котором пойдет речь ниже, связано с двумя обстоятельствами. Во-первых, цирконий, гафний п тантал по сравнению с элементами, находящимися правее в периодической системе, имеют больший размер, меньшую электроотри- [c.271]

    КЕРАМИКО - МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ, керметы — материалы, представляющие собой гетерогенные композиции одной или нескольких керамических фаз с металлами класс композиционных материалов. Обладают улучшенными св-вами, не присупщми исходным компонентам. Впервые предложены (1922) в Германии как твердые сплавы. Композиции, в к-рых керамическая фаза улучшает св-ва металла, относятся к дисперсноупрочненным материалам (инфракерметы), соответственно керамика с металлом является улучшенной керамикой (ульт-ракерметы). В К.-м. м. в качестве керамической фазы чаще всего иснользуют окислы, карбиды, бориды и нитриды тугоплавких металлов, в качестве металлической фазы — металлы группы железа или тугоплавкие металлы — ванадий, хром, молибден, вольфрам, ниобий и тантал. Компоненты К.-м. м. должны удовлетворять спец. требованиям в отношении хим. стабильности, термической совместимости и возможности образования связи на границе фаз. Требование относительно хим. стабильности определяет такое сочетание [c.565]

    Осаждение миндальной кислотой. Миндальная кислота eHj HOH OOH образует с цирконием белый хлопьевидный осадок, который при нагревании переходит в кристаллический. Осадок имеет состав Zr( gH5 HOH OO)4 [586]. Манделат циркония разлагается NaOH с образованием гидроокиси циркония. Осадок растворим в концентрированной соляной, серной (1 1) и щавелевой кислотах. Винная и лимонная кислоты не мешают количественному осаждению циркония поэтому мешающие определению вольфрам, тантал и ниобий маскируют винной или лимонной кислотой. Замедленное осаждение циркония наблюдается при содержании этих кислот в растворе до 10 г. Определению циркония миндальной кислотой не мешают железо, алюминий, хром, титан, ванадий, молибден, редкоземельные элементы [19]. [c.64]

    По технологическим свойствам металлов этой группы надо отметить следующие. Тантал, ниобий — пластичные металлы, хорошо прокатываются и свариваются, что позволяет использовать их в качестве облицовочного и плакирующего материала. Молибден, вольфрам и ванадий — малопластичные металлы, что затрудняет (но не исключает) их практическое применение как коррознонностойких материалов. [c.298]

    При относительно низкой температуре окисел еще легко восстановить, если теплота образования на1 атом кислорода не превышает 70 ккал. Если она выше 70 ккал, требуется значительно более высокая температура и большее количество водорода. В этом случае труднее предупредить внесение примесей вследствие контакта со стенками реакционного сосуда. А при теплоте образования выше 90 ккал мefoд совсем не пригоден. Все металлы V группы также можно легко получить восстановлением их окислов водородом для металлов первых четырех групп этот метод исключен. Марганец, хром и ванадий представляют промежуточный случай. Благодаря высоким температурам плавления, несмотря на относительно более высокие теплоты образования, можно получить рений, молибден, вольфрам, ниобий и тантал высокой степени частоты. Металлы, окислы которых восстанавливаются водородом, в большинстве случаев можно также получить электролизом водных растворов. Электролитическое получение металлов 5-го и 6-го периодов, которые [c.342]


Смотреть страницы где упоминается термин Тантал, ниобий, ванадий, молибден, вольфрам: [c.107]    [c.630]    [c.114]    [c.4]    [c.356]    [c.126]    [c.32]    [c.280]    [c.82]    [c.69]    [c.80]    [c.20]   
Смотреть главы в:

Теория коррозии и коррозионно-стойкие конструкционные сплавы -> Тантал, ниобий, ванадий, молибден, вольфрам




ПОИСК





Смотрите так же термины и статьи:

Ниобий вольфрама

Ниобий молибдена

Ниобий см Ванадий

Ниобий тантале

Тантал

Тантал вольфрама

Тантал молибдена



© 2025 chem21.info Реклама на сайте