Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель с калием, рубидием и цезие

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]


    Проследим за изменением коксообразующей и регенерационной активности металлов в зависимости от их положения в периодической системе элементов Д. И. Менделеева. Если рассмотреть элементы IV периода, то металлы, расположенные в начале периода (калий и кальций), способствуют уменьшению коксообразования при незначительном их влиянии на регенерацию катализатора. Металлы же, расположенные в средней части периода (хром, марганец, кобальт, молибден, никель, медь), усиливают образование кокса и некоторые из них (хром, железо) весьма сильно катализируют его сгорание. Влияние элементов главной подгруппы II группы (бериллий, магний, кальций, стронций, барий) на результаты крекинга и регенерации катализатора одинаково. Элементы главной подгруппы I группы (литий, натрий, калий, рубидий, цезий) почти одинаково влияют на коксообразование, но легкие металлы (литий и натрий) резко усиливают регенерационную способность алюмосиликатного катализатора. Это позволяет предсказывать влияние металлов, нанесенных на алюмосиликатный катализатор, на результаты каталитического крекинга. Элементы главных подгрупп I и II групп вызывают уменьшение образования кокса и снижение активности катализатора вследствие нейтрализации кислотных центров. Легкие элементы [c.54]

    Катионами могут быть сильно электроположительные металлы, такие как литий, натрий, калий, рубидий, цезий, кальций, магний и т. д. Анионами могут быть комплексы бора, кремния, мышьяка, алюминия, титана, ртути, ванадия, марганца, молибдена, хрома, кобальта, железа, цинка, платины, никеля, лантана и т. д. Отрицательными группами в комплексе могут служить фтор, хлор, бром, иод, кислород, гидроксильная группа нейтральными —алкильная, арильная, карбонильная, гидроксильная группы. Типичные комплексные анионы приведены в следуюш,ем перечне  [c.252]

    Водород Гелий Неон. . Аргон. Криптон Ксенон. Радон Хлор. . Молибден Вольфрам Ниобий. Тантал. Титан Железо. Никель, Марганец Хром. . Стронций Барий Литий. Натрий. Калий. Рубидий Цезий.  [c.97]

    Единичная металлическая связь слабее, чем связь в молекуле, ска ем, Маг или Кг- Однако из-за громадного числа метал- лических связей ион-атомы в металле оказываются прочно связанными. Такие характеристики, как механическая прочность, плотность, температура плавления, у металлов тем выше, чем больше число электронов, участвующих в связи атомов друг с другом. Металлы литий, натрий, калий, рубидий, цезий, обладающие единственным валентным электроном, плавятся при невысоких температурах. Самое большое число электронов, используемых для связи, может быть равно шести, например у хрома, который является самым твердым из металлов. Чуть меньше прочность и температура плавления у железа и никеля. [c.89]


    Мешающие ионы. В описанных ниже условиях осаждаются также калий, рубидий, цезий, аммоний, цинк, ртуть (I), ртуть (И), серебро, церий (IV), цирконий, кобальт, никель, марганец, платина (IV), сурьма (III) и висмут. [c.1023]

    Боннер предложил шкалу селективности ионов по коэффициентам избирательности на катионите дауэкс-50 литий, гидроксоний, натрий, аммоний, калий, рубидий, цезий, серебро, таллий ири 4, 8 и 16% ДВБ. Для двухзарядных ионов шкала имеет вид уранил, магний, цинк, кобальт (II), медь (II), кадмий (II), никель (II), кальций, стронций, свинец (II), барий. [c.102]

    Окись меди (сильно действует) активность последовательно уменьшается для окислов хрома, никеля, железа, урана, таллия, марганца, кобальта, алюминия карбонаты щелочных металлов особенно благоприятны, активность уменьшается в последовательности карбонат калия, натрия, рубидия, цезия, лития бикарбонаты щелочных металлов действуют сильнее, чем можно было ожидать однако чистый карбонат калия остается по активности на первом месте [c.179]

    Выход твердого полимера этилена может быть повышен, если катализатор — никель на угле применить в сочетании со щелочными металлами — литием, натрием, калием, рубидием или цезием. На 1 весовую часть никелевого катализатора берут от 0,001 до 2 весовых частей щелочного металла. В случае натрия предпочитают брать от 0,1 до 1,0 весовой части [33]. Щелочноземельные металлы, такие, как кальций, барий, стронций и магний, также являются эффективными промоторами для катализаторов из окиси никеля на угле [69]. [c.319]

    Описанная реакция специфична для свинца. Только барий, стронций или кальций дают осадки, состоящие из кристаллов, похожих по форме на кристаллы соединения свинца однако кристаллы соединения бария бесцветны, а кристаллы, получаемые со стронцием или кальцием, имеют зеленый цвет. Для получения комплексной соли свинца вместо соли меди можно брать соль никеля, что не приводит к значительному изменению вида кристаллов вместо калия можно применять ионы рубидия, цезия и таллия (одновалентного), соли которых лучше растворимы, чем соли калия. При выполнении реакции на свинец лучшие результаты получаются в случае соотношения РЬ Си = 1 10. Однако это соотношение строго соблюдать необязательно, так как предельные отношения допускают большие отклонения. [c.63]

    Алюминий Барий Железо Калий Кальций Кобальт Литий Магний Марганец Медь Натрий Никель Олово Рубидий Свинец Серебро Сульфаты Фосфаты Хлориды Цезий иодид С51 [c.583]

    Шениты. Шенитами называют двойные сульфаты калия, рубидия и цезия с сульфатами магния, меди, кобальта и никеля общая их формула Мег 504>Ме 504 бНгО . По растворимости. рубидиевые и цезиевые шениты занимают, в общем, промежуточное положение между простыми сульфатами и квасцами характерным для медных, кобальтовых и никелевых шенитов является меньшая растворимость рубидиевых соединений по сравнению с калиевыми и цезиевыми. [c.38]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]


    Из солей рениевой кислоты описаны соли натрия, калия, рубидия, цезия, аммония, меди, серебра, бария, неодима, лантана, марганца и никеля, а также целый ряд амминонроизводных, соли нитрона и других органических [c.54]

    К шёнитам относятся двойные сульфаты с общей формулой М М (S04)a 6Н2О, где М — катионы калия, рубидия, цезия, таллия, аммония, — катионы магния, ванадия, хрома, марганца, железа, кобальта, никеля, меди, цинка и кадмия. [c.54]

    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]

    Для извлечения цезия и рубидия радиоактивный раствор пропускают через глауконитовую колонку, которую затем промывают 0,1 и. раствором (ЫН гСОз для удаления основной части солей калия и натрия. После этого цезий и рубидий десорбируют 1—2 н. раствором (N1 4)2003. Отработанный десорбент упаривают, интенсивно перемешивая его воздухом. После удаления ЫНз и СО2 обрабатывают его ферроцианидом никеля для связывания цезия и рубидия [2161. Глауконитовую колонку вновь используют для сорбции цезия. [c.134]

    Для извлечения цезид и рубидия радиоактивный раствор с рН = 2,7—13,0 пропускают через глауконитовую колонку, которую затем промывают 0,1 н раствором карбоната аммония для удаления основной части солей калия н натрия, после чего цезий и рубидий десорбируют 1—2 н. раствором карбоната аммония. Отработанный десорбент (раствор карбоната аммония) упаривают при 70—80° С при интенсивном перемешивании воздухом и после удаления NH3 и СО2 обрабатывают ферроцианидом никеля для связывания цезия и рубидия [287]. Глауконитовая колонка может быть затем снова использована для сорбции цезия. [c.333]

    Ортофосфорная кислота, фосфорный ангид рид (на фуллеровой земле, кремнеземе)-фосфористый ангидрид на кизельгуре Фосфат серебра, растворенный в ортофосфор-ной кислоте Хлорная кислота с серной кислотой (Уксусная кислота, ортофосфорная кислота) Свежеосажденная сернокислая ртуть Окись алюминия с окисью ртути и ортофос-форной кислотой Окись алюминия + (окиси, селениды натрия, рубидия, цезия, калия или железа, кобальта, никеля) [c.8]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Метод фотометрии пламени был применен для определения калия в катализаторахэлектролитах234 солях натрия , калия 25 рапе 235. Примесь калия определялась этим методом в солях натрия 236 (после обогащения в виде тетрафенилбората), в рубидии, цезии и их солях 237,238 в солях щелочноземельных металлов 26, ртути в алюминии молибдене, вольфраме и трехокиси вольфрама 131.132.239 в окиси никеля 2, титанате бария 2 , уранилнитрате и в иодиде натрия для сцинтилляцион-ных целей 2 . [c.216]

    Чувствительность МФП-АНИФЕСК 1 мкг натрия в 10. чл раствора. Определению не мешали 20-кратпыс количества стронция 10-кратные — рубидия, цезия и бария 5-кратные — калия, кальция, цинка, кадмия и никеля 2-кратные — меди (И), магния, железа (111) и к(. 1алыа (И) 2-10 2-кратные количества лития [3]. [c.9]

    Медь, цинк, кадмий, кобальт, никель, лантан, уран, марганец, (И) также образуют с сульфарсазеном окрашенные соединения. Не образуют последних и не мешают определению свинца литий, калий, натрий, рубидий, цезий, магний, барий, стронций, кальций мышьяк, висмут, вольфрам, толлий (HI), германий, галлий в количествах до 50у. Железо (III), алюминий, титан,бериллий, олово (IV), теллур, иттрий, скандий, цирконий, ванадий (V), молибден (VI), торий в количествах 50у мешают определению свинца. [c.210]

    На рис. 99 представлено изменение валентных состояний металлов больших периодов в зависимости от их атомного номера. Указаны валентности каждого металла в различных химических соединениях, причем валентности, соответствующие наиболее прочным соединениям, даны зачерненными значками. От I до VI групп высшей валентностью, отвечающей наиболее прочной химической связи, оказывается валентность, соответствующая номеру группы. Только у хрома наряду с шестивалентными соединениями сравнительно прочными оказываются и трехвалентные. В VII группе наибольшая прочность соединений соответствует двухвалентному марганцу, который бывает и одновалентным, однако технеций и рений дают более стабильные четырех-, шести- и семивалентные соединения. В VIII группе у железа, кобальта и никеля наибольшая прочность связи соответствует двух- и трехвалептным соединениям, а у рутения и осмия — четырехвалентным. У родия и иридия наиболее прочны трехвалентные соединения, у никеля, палладия и платины — двухвалентные, а у металлов I группы — меди, серебра и золота — устойчивы одновалентные соединения. Итак, обычные химические валентности у элементов 4-го, 5-го и б-го периодов нарастают от 1+ для калия, рубидия и цезия до 6-(-для хрома, молибдена и вольфрама, а затем падают до 1+ У меди, серебра и золота. Принимая, что эти валентности определяют число электронов, отделяющихся от атомов соответствующих элементов при образовании [c.229]

    Во всех трех больших периодах при переходе от металла I группы (калия, рубидия и цезия) к металлам VI группы (хрому, молибдену и вольфраму) наблюдается сильное уменьшение межатомных расстояний и диаметров атомов, соответствующее предлагаемой гипотезе о полном отделении всех валентных электронов и обнажении р -оболочек ионов. Чем больше избыточный заряд таких ионов с одинаковыми электронными конфигурациями, тем, естественно, сильнее притяжение р-электронов к ядру и тем меньше диаметр этих ионов и короче расстояния между ними. Этому сокращению расстояний способствует и повышение электронной концентрации. Атомные диаметрых-мар-ганца (плотная кубическая модификация) и б-марганца (объемноцентрированная кубическая модификация) резко увеличены по сравнению с соответствующим диаметром атомов хрома и железа, что вновь указывает на пониженную степень ионизации атомов марганца (1- -). Железо, кобальт и никель имеют меньшие атомные диаметры вследствие того, что они двухкратно ионизированы. От железа к никелю межатомные расстояния уменьшаются в связи с сокращением размеров внешней электронной оболочки. Уменьшение межатомного расстояния продолжается в VII и VIII группах в связи с переходом от объемноцентрированной к плотнейшим упаковкам и достигает минимума у рутения и осмия. Межатомные расстояния от рутения к палладию и от осмия к платине слегка увеличиваются вследствие уменьшения электронной концентрации от 4 до 2 элЫтом и соответствующего понижения энергии межатомной связи. Далее к побочным металлам второй группы (цинку, кадмию и ртути) межатомные расстояния и атомные диаметры продолжают возрастать в связи с уменьшением концентрации свободных электронов. Атомные радиусы [c.233]

    Принципиальные возможности использования цеолитов в качестве селективных ионообменников очевидны пз приведенных выше данных по ионообменным равновесиям и кинетике. Однако широко эти возможности пока не реализуются. Синтетические цеолиты из-за невысокой химической устойчивости могут найти ограниченное применение [7], в то время как высококремнистые дешевые природные цеолиты имеют широкие перспективы [74, 7.5]. Имеющиеся литературные данные свидетельствуют о том, что синтетические цеолиты с успехом могут быть использованы для разде.тения изотопов лития, а также смесей щелочных металлов, например рубидия и калия, рубидия и цезия, очистки цезия от рубидия, калия и натрия на цеолите X, а также рубидия от калия, натрия, цезия на цеолите А. Цеолит X позволяет осуществлять разделение стронция и кальция [29] в условиях, когда концентрация кальция в 400—500 раз превышает содержание стронция. Высокие селективность и емкость цеолита Л позволили осуществить в лабораторных л словиях выделение лтеди(П) пз продуктов гидрометаллургического производства на фоне 0,7. У раствора сульфата натрия при pH 4—4,5 [7Г)], а также хроматографическое разделение меди и никеля [25]. Показано, что прп-лгенение синтетических цеолитов вместо ионитов в противо-точных ионообменных установках зпачите.яьпо повышает эффективность процессов разделения [7]. [c.58]


Смотреть страницы где упоминается термин Никель с калием, рубидием и цезие: [c.16]    [c.5]    [c.56]    [c.579]    [c.181]    [c.788]    [c.75]    [c.316]    [c.189]    [c.550]    [c.79]    [c.207]    [c.466]    [c.125]    [c.137]   
Успехи химии фтора (1964) -- [ c.88 , c.112 , c.113 , c.516 , c.517 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.88 , c.112 , c.113 , c.516 , c.517 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте