Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционное взаимодействие, тип водородная связь

    Вещества (ПАВ и ВМС), создающие структурно-механический барьер, называются стабилизаторами. Адсорбционные слои структурируются вследствие ориентации молекул и боковой когезии (в результате притяжения диполей полярных групп соседних молекул, образования водородных связей или гидрофобного взаимодействия неполярных групп). Прочность полимерных слоев увеличивается во времени (в отличие от слоев ПАВ), достигая предельного значения лишь через несколько часов, что обусловлено замедленной диффузией макромолекул и медленной ориентацией их на границе раздела фаз. [c.260]


    Водородные связи принимают участие в таких явлениях, как смачиваемость твердых поверхностей водой (гидрофильность поверхности), адсорбционные взаимодействия, гидратация полярных групп поверхностно-активных веществ и гидрофильных коллоидов. [c.103]

    В адсорбционной газовой и особенно жидкостной хроматографии обнаруживаются самые разнообразные виды межмолекулярных взаимодействий адсорбат — адсорбент — от универсальных неспецифических межмолекулярных взаимодействий, которые проявляются в той или иной степени во всех случаях, до различных специфических взаимодействий, в которых наблюдаются ориентационные электростатические взаимодействия, водородная связь, образование комплексов с переносом заряда и лигандообменных комплексов. Поэтому при хроматографировании разных ио природе веществ используются разные виды межмолекулярных взаимодействий с другой стороны, хроматография позволяет изучать сами межмолекулярные взаимодействия. [c.10]

    В адсорбционной хроматографии результат разделения определяется процессами сорбции — десорбции молекул на поверхности носителя. Сорбция обусловлена совокупностью взаимодействий молекул разделяемых веществ и растворителей с поверхностью сорбента (дипольные взаимодействия, водородные связи, вандерваальсовы силы, ионные взаимодействия). В ходе разделения молекулы растворенного вещества и растворителя конкурируют с участками связывания на поверхности адсорбента. Степень сорбции вещества можно регулировать, меняя либо характеристики распределяемого вещества (например, заряд присутствующих в растворе частиц), либо свойства элюента. В результате этих изменений происходит конкурентное образование (или разрушение) множественных контактов между растворенным веществом, растворителем и сорбентом. [c.197]

    Поскольку специфическое взаимодействие в этом случае включает образование направленных водородных связей или является электростатическим ориентационным, удерживание, кроме протонодонорной способности или значения дипольного и квадрупольного момента молекулы, в сильной степени определяется доступностью полярных групп поверхности для полярных групп вещества и возможностью нужной для специфического взаимодействия ориентации его молекул относительно полярных групп на поверхности адсорбента. В этом варианте наблюдается высокая селективность разделения изомеров и других соединений, отличающихся как пространственным строением, так и распределением электронной плотности в молекуле. Например, жидкостно-адсорбционная хроматография на полярном адсорбенте, в частности на силикагеле с гидроксилированной поверхностью из неполярного или слабополярного элюента позволяет хорошо разделять о-, м- и п-изомеры ароматических соединений, содержащих полярные группы в этих положениях. [c.303]


    Помимо электростатических ориентационных межмолекулярных взаимодействий и водородных связей в жидкостной хроматографии можно использовать и другие виды слабых специфических взаимодействий с образованием нестойких комплексов с переносом заряда. Можно иммобилизовать, т. е. закрепить адсорбционно (см. лекцию 4) или химически (см. лекцию 5) на поверхности адсорбента-носителя соответствующие электронодонорные или электроноакцепторные молекулы или группы. В лекции 5 был рассмотрен пример химического модифицирования [c.327]

    При адсорбции на поверхности силикатного и алюмосиликат-ного типа значительный вклад в адсорбционное взаимодействие может внести образование водородной связи между адсорбатом и адсорбентом, например при адсорбции Н2О на силикагеле  [c.128]

    При адсорбции на поверхности силикатного и алюмосили-катного типа значительный вклад в адсорбционное взаимодействие может внести образование водородной связи между адсорбатом и адсорбентом, когда один из протонов делится между ионом кислорода воды и анионом твердого тела. Эта связь, предсказанная еще Вернером (считавшим водород координационно-двухвалентным атомом), проявляется, например, при адсорбции НаО на силикагеле [c.149]

    Адсорбция ферментов на нерастворимых носителях. При адсорбционной иммобилизации белковая молекула удерживается на поверхности носителя за счет электростатических, гидрофобных, дисперсионных взаимодействий и водородных связей. Адсорбция была первым методом иммобилизации ферментов (Дж. Нельсон, [c.88]

    Проведенные нами исследования по изучению прочности водородных связей, образуемых с водой различными органическими соединениями [331], описанные в главе II, позволяют высказать некоторые новые суждения о состоянии адсорбированной воды и о механизме адсорбционного взаимодействия. На основании произведенной оценки энергии Н-связи в табл. 22 приведены органиче- [c.132]

    Одной из характерных особенностей ферментативного катализа является способность ферментов образовывать адсорбционные, обычно нековалентные комплексы. Идеальные модели ферментативных процессов должны включать взаимодействия данного типа. К такого рода ассоциатам могут приводить ионные и неполярные взаимодействия, а также образование водородных связей. К неполярным следует относить мицеллярные комплексы, я-комплексы и комплексы включения. [c.310]

    Сущность граничной смазки заключается в следующем. В результате взаимодействия металлических поверхностей со смазочным маслом на образовавшейся окисной пленке, покрывающей основной металл, формируются вторичные адсорбционные граничные пленки из компонентов масла. Силы, действующие на адсорбированные слои смазки, можно условно разделить на химические (хемосорбция), адсорбционные (силы Ван-дер-Ваальса между твердым телом и молекулами, адсорбированными на его поверхности) и межмо-лекулярные (между адсорбированными молекулами), а также силы водородной связи. [c.9]

    Если молекулы адсорбата связаны сильной водородной связью, взаимодействие адсорбат—адсорбат будет усиливаться. Это заметно проявляется для воды и менее сильно для аммиака. В случае воды наблюдается тенденция к характерному тетраэдрическому расположению молекул в адсорбционном слое, а до тех пор, пока взаимодействие с адсорбентом не будет достаточно сильным, будут получаться изотермы III типа. Это действительно [c.112]

    Изучение адсорбции на цеолитах с позиций теории объемного заполнения весьма плодотворно. Даже в сложных случаях, когда небольшие полярные молекулы локально взаимодействуют с атомами или ионами решетки цеолита (водородные связи, ион-дипольные, донорно-акцептор-ные взаимодействия и т. п.), их адсорбцию также можно рассматривать как результат воздействия аддитивного адсорбционного поля, имеюш его полимодальное распределение. [c.254]

    Наиболее полная информация о состоянии поверхностных силанольных групп и других адсорбционных центров, об их возмущении при адсорбции и образовании поверхностных комплексов разной прочности, а также о межмолекулярных взаимодействиях адсорбированных молек(ул с поверхностью твердого тела и друг с другом может быть получена, если спектры отдельных частей адсорбционной системы не перекрываются. Однако на сильно гидроксилированной поверхности кремнезема силанольные группы, расположенные друг от друга на расстоянии, меньшем 0,33 нм, возмущены образовавшимися между ними внутримолекулярными водородными связями. Дополнительное возмущение этих гр упп вызывает адсорбция воды. В результате этого спектр поглощения в области валентных колебаний гидроксильных групп молекул адсорбированной воды перекрывается со спектром силанольных групп, что затр(удняет интерпретацию поглощения в этой области. Для упрощения спектра и его интерпретации надо исследовать дегидратацию кремнезема, т. е. удаление молекулярно адсорбированной воды (хотя бы с поверхности пор, размеры которых достаточно велики по сравнению с размерами молекул воды). [c.56]


    В водном растворе энергия взаимодействия компонентов зависит от влияния органических молекул на структуру жидкой воды. Суммарным проявлением этих взаимодействий является величина растворимости. Поэтому коэффициенты активности компонентов в адсорбционной фазе могут быть выражены через растворимость веществ и энергию их диполь-дипольного (или ионного) взаимодействия, характер которого в адсорбционной фазе может существенно отличаться от взаимодействия в жидкости из-за фиксированной ориентации на границе раздела фаз. Активность органических молекул в водных растворах при небольшой их растворимости с достаточным приближением учитывается степенью их ионизации. То обстоятельство, что водородные связи в водных растворах низкомолекулярных веществ играют основную роль, значительно облегчило понимание условий равновесия на границе раздела водный раствор — неполярный адсорбент и нахождение наиболее вероятной ориентации адсорбированных из раствора органических молекул. [c.209]

    Сопоставление изотерм адсорбции пара бензола на исходном силохроме, карбо-кремнеземах с разным содержанием пироуглерода и на графитированной саже позволяет проследить за изменением природы поверхности этих адсорбентов (рис. 4.10). Несмотря на экранировку части силанольных групп поверхности, обусловливающих слабую- водородную связь молекул бензола с гидроксилированной поверхностью, кремнезема, резкое усиление неспецифического взаимодействия с углеродом приводит к увеличению адсорбции пара бензола на кар-босилохроме. Сравнение адсорбционной способности ГТС и карбосилохрома по отношению к пару бензола говорит о том, что поверхность изученного карбосилохрома покрыта пироуглеродом не полностью. При этом образуется, по-видимому, мозаичная поверхность адсорбционные свойства которой можно регулировать, откладывая различные количества пироуглерода. [c.88]

    В-третьих, существует важная промежуточная область, когда взаимодействие носит преимущественно локальный и направленный характер, но химическая индивидуальность молекулы еще сохраняется или легко может быть восстановлена при нагревании, адсорбции вытеснителя и т. п. Сюда относится водородная связь, зх-комплексы и в предельном случае — взаимодействие с переносом заряда. Целесообразно назвать эти взаимодействия специфическими молекулярными, вкладывая в этот термин отмеченный ранее смысл (см., например, [2]). Эти взаимодействия вызывают столь сильные и отчетливые изменения в энергиях и в инфракрасных и электронных спектрах адсорбционных систем (иногда вплоть до появления спектров ЭПР), что квантовая химия может объяснить уже найденные и предсказать новые корреляции между этими эксперимептальными величинами. Здесь важно исследование соотношения локальных и коллективных взаимодействий, изучение влияния акцепторных и допорных центров, природы адсорбции оптических изомеров. Надо попытаться развить молекулярно-статистическую теорию п здесь, основав ее на доступных спектроскопических данных, включая далекую ИК-область и ЯМР, на исследованиях теплоемкости и на хотя бы качественных указаниях квантовохимической теории. [c.105]

    Помимо воды, входящей в состав оксидов, на поверхности металла может присутствовать вода, связанная с ним электронодонорно-акцепторным (ЭДА) взаимодействием, водородной связью или ван-дер-ваальсовыми адсорбционными силами [303]. Тип связи воды с поверхностными атомами металла зависит от природы и металла, и электролита. Так, в кислой или нейтральной среде поверхность железа несет на себе положительный заряд, и можно ожидать электронодонорного взаимодействия воды с этой поверхностью. В щелочной среде или при недостатке НзО+-ионов вблизи электродов предпочтительна ориентация воды в двойном слое атомами водорода к поверхности металла. Следовательно, энергия связи воды с поверхностью металла может изменяться в широком интервале — от химической связи до слабой водородной или ван-дер-ваальсовой. [c.292]

    На поверхности металла присутствует химически и физически связанная вода. Исследования, выполненные с использованием меченной тритием воды и р-спектрометра с жидким сцинтиллятором, показали, что количество воды в пленке окислов железа составляет Ы0 молекул на 1 см . Во внешнем слое окисла у-РегОз находится 9,3-101 молекул воды на 1 см , т. е. 90% всей связанной воды. Состав внешнего слоя отвечает формуле РегОз-1,5 Н2О небольшое количество воды находится во внутреннем слое окисла Рез04 [63]. Толщину адсорбционной пленки воды на металле и протекание под ней коррозионных процессов можно оценить методом пьезокварцевого резонатора [63]. Чувствительность этого метода — порядка одного моноатомного слоя воды. Помимо воды, входящей в состав окислов, на поверхности металла может присутствовать вода, связанная с ним электронодонорно-акцепторным (ЭДА) взаимодействием, водородной связью (Н-связью) или ван-дер-ваальсовыми адсорбционными силами. Вероятно, первый мономолекулярный слой воды связан с металлом за счет ЭДА-взаимодействий или Н-связей, последующие слои — за счет Н-связей и физической адсорбции (рис. 4). [c.32]

    Известно, что адсорбционными центрами силикагелей и алюмосиликатов (к типу которых можно отнести природные сорбенты) являются выступающие поверхностные группы гидроксилов и атомов кислорода. Поэтому адсорбция молекул спирта и амина будет в оановном определяться взаимодействием этих молекул с поверхностными атомами кислорода или гидроксильными группами [9—11]. Взаимодействия эти, вероятно, будут специфическими молекулярными взаимодействиями между молекулами адсорбата и поверхностными группами адсорбента [12]. Одно из таких специфических взаимодействий — водородная связь, возникающая между адсорбированными молекулами (например, молекулами спирта и амина) и гидроксилами поверхности кремнеземов [12, 13]. Более глубокие молекулярные взаимодействия могут привести к образованию на поверхности адсорбента соединений (в случае адсорбции спиртов) типа поверхностных эфиров [9—11]. При изучении процессов адсорбции кроме взаимодействия молекул адсорбата с адсорбентом необходимо учитывать также взаимодействие адсорбат—адсорбат. В литературе[14, 15] есть указание на то, что адсорбция спиртов и аминов может происходить не в виде изолированных молекул, а в виде ассоциатов молекул, связанных друг с другом водородными связями. [c.127]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Необходимо обратить внимание, что появление дипольного момента у молекул, возможность образования водородной связи или сильное взаимодействие молекул газа в адсорбированном слое при больших концентрациях изменяет адсорбционный потенциал и как следствие, коэффиицент разделения [2]. [c.51]

    Одним из важных практических выводов при рассмотрении природы адсорбционного взаимодейств1[я является вывод о значительно лучшей адсорбции веществ в трещинах и порах, когда проявляется преимущественно дисперсионное взаимодействие, так как вблизи адсорбированной молекулы находится большее число атомов твердого тела. Если же в адсорбционном взаимодействии значителен электростатический вклад, то в щелях и порах положительные и отрицательные заряды компенсируют друг друга и наибольший потенциал оказывается на выступах, где и будет преобладать адсорбция, особенно при образовангш водородных связей (адсорбция воды, метилового спирта и др.). Кроме того, из уравнений (И1.6) и (III. 7) следует, что чем большее число атомов имеет молекула адсорбата, тем с большей энергией она будет притягиваться к адсорбенту. [c.111]

    Адсорбция на ровной поверхности зависит в основном от природы адсорбента и адсорбата, ет их взаимного сродства. Необло-димо различать влияние этих факторов на величину адсорбции. 4 и на константу адсорбционного равновесия К- Чем сильнее взаимодействие адсорбент — адсорбат, тем больше К и тем большая величина мономолекулярной адсорбции А достигается при тех >i e равновесных давлениях 1глн концентрациях. Обычно считают, что сродство адсорбента к адсорбату (илп К) тем сильнее, чем больЛс-нх склонность к образованию связей одной природы, нанример, к дисперсионному взаимодействию, нли к диполь-динольному, или к образованию водородных связей, или к сильным химическим взаимодействиям. [c.124]

    Для хроматографии молекул на основании их химического и геометрического строения и возможных изменений конформации весьма важно создание на поверхности адсорбентов рецепторных мест фиксации, способных проявлять различные виды межмолекулярных взаимодействий, (табл. 1.1). В лекции 1 показано, что для разделения множества структурных изомеров достаточно применить неспецифические атомарные адсорбенты с плоской поверхностью. В лекции 2 приведены примеры хроматографии близких по геометрии полярных молещул при дополнительном воздействии на такие молекулы электростатического поля ионных адсорбентов. Б лекциях 3 и 4 рассмотрено использование образования между молекулами и поверхностными соединениями водородных связей. В лекции 4 показано также, что адсорбенту можно придать электроноакцепторные свойства путем отложения на его поверхности адсорбционных слоев модифицирующих веществ, обладающих этими свойствами. Это улучшает разделение электронодонорных молекул. Однако адсорбционные модифицир ующие слои часто оказываются недостаточно термически стойкими для использования в газовой хроматографии при высоких температурах или нестойкими к воздействию растворителей (элюентов) в жидкостной хроматографии. Поэтому весьма важно использовать для связи модифицирующего вещества с поверхностью адсорбента также и более прочные химические связи. При этом надо стремиться достичь геометрического и химического соответствия поверхностных соединений и тех или [c.89]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Подвижные фазы в ЖКХ различают по их элюирующей способности. В адсорбционной хроматографии на полярных. сорбентах элюирующая сила тем больше, чем полярнее растворитель. Экспериментально уста ювленную последовательность растворителей с возрастающей элюирующей силой называют элюот-ропным рядом. Элюирующая сила е, как правило, возрастает с увеличением диэлектрической проницаемости растворителя. Чаще всего используют насыщенные углеводороды (гексан, гептан), тетрахлорид углерода, хлороформ, этанол, метанол, воду (растворители расположены в порядке возрастания элюирующей силы). Элюирующую силу можно изменять в необходимых пределах добавлением к растворителю с низкой элюирующей силой более активного растворителя. Элюирующая способность смеси резко возрастает при небольших добавлениях полярного растворителя к неполярному (рис. 28.8). Если различие в элюирующей силе растворителей незначительно, то зависимость близка к линейной. В том случае, если к неполярному элюенту добавляют полярный, способный к образованию водородных связей (спирты, эфиры и др.), удерживание и селективность определяются специфическими взаимодействиями вещество— адсорбент, вещество — элюент и элюент — адсорбент. Эту систему применяют для разделения полярных, сильноудерживаемых соединений. Водородные связи образуются как между сорбентом и веществом, так и между веществом и элюентом, что резко сказывается на хроматографическом поведении соединений. Так, фенол и анилин в элюен-те, не способном к образованию Н-связи, выходят в указанной последовательности, а в подвижной фазе, содержащей спирты, порядок противоположный. Это объясняется тем, что анилин, в состав молекулы которого входит аминогруппа —NH2, обладает большей способностью к образованию водородных связей с молекулами спирта, чем фенол. [c.600]

    По мнению некоторых авторов, щелочи способны разрушать межфазные пленки благодаря своей особенности разрушать водородные связи и ослаблять гидрофобное взаимодействие между компонентами нефти. Последующая гидрофи-лизация поверхности породы способствует повышению поверхностной плотности отрицательного заряда породы и уменьшению на ней числа кислотных центров, способных образовывать водородные связи, что благоприятствует снижению адсорбционных процессов поверхностно-активных веществ. [c.96]

    Характер и степень связывания молекул вещества сорбентом сильно зависят от взаимодействия вещества с элюентом. В этом взаимодействии участвуют те же силы динольного и дисперсионного характера, а также водородные связи и электростатические силы. Совокупность всех взаимодействий обусловливает степень растворимости вещества в элюенте. Склонность к адсорбции и растворимость вещества выступают как конкурирующие характеристики, соотношением которых можно управлять путем изменения состава элюента. Изменение силы и характера адсорбции вещества при этом может происходить как за счет изменения физических параметров его молекул (заряда, конформации), так и за счет изменения эффективности конкуренции молекул элюента за центры сорбции, а также в результате того, что под действием элюента могут изменяться и сорбционные свойства самого сорбента. Особо надо отметить воздействие на фактор стерического соответствия молекул вещества и сорбента, т. е. возможности совпадения расстояний между способными взаимодействовать атомами и химическими группами на поверхностях обоих партнеров, когда контакт между ними оказывается неодноточечным. Этот фактор может придавать адсорбционной хроматографии особенно высокую степень избирательности. [c.222]

    Хроматография на силикагеле. Силикагель является продуктом полимеризации ортокремниевой кислоты (Н45104). Он выпускается рядом фирм в виде зерен различной величины. Адсорбционные свойства силикагеля обусловлены присутствием на поверхности зерен гидроксильных групп, которые за счет водородных связей взаимодействуют друг с другом и водой. Гидратированный силикагель мало активен как адсорбент. При нагревании от 50 до 150 С происходит дегидратация, приводящая к значительному увеличению адсорбционной способности силикагеля. Нагревание при температуре свыше 150°С способствует образованию силоксановых связей (Si—О—51), что снижает адсорбционную способность силикагеля. Такой силикагель уже нельзя реактивировать путем присоединения воды. Лучший способ избежать образования силоксановых групп — активация силикагеля нагреванием в вакууме при температуре 50°С. [c.69]

    Адсорбция белков и других биологических полимеров чрезвычайно сложна, поскольку в ней участвуют водородные связи с группами ОН, НН или СО, ионные связи через четвертичные аммониевые ионы, присутствующие в некоторых разновидностях белков, и в особенности связп гидрофобной природы, возникающие между сегментами протеиновых цепей и зависящие от их конфигурации. Взаимодействие поверхности кремнезема с желатином обсуждалось в гл. 3 (см. рис. 3.11, лит. к гл. 3 [856]), а с белками и с родственными веществами будет рассмотрено в гл. 7 (см. лит. к гл. 7 [249—273]). Данная тема, вызывает постоянное внимание вот уже в течение более четверти века. Еще в 1954 г. Холт и Боукотт [441а] измерили адсорбционную способность на превращенном в порощок кварце с известной величиной удельной поверхности по отношению к коровьему альбумину. Из полученных данных можно подсчитать, что при монослойном покрытии на 1 нм поверхности удерживалось около 4 амидных сегментов, принимая усредненное значение молекулярной массы амидного сегмента равным 100. По-видимому, такая величина адсорбции является правдоподобной, если рассматривать протеиновую цепь в форме спирали. Максимальная адсорбция наблюдалась при pH 5—6. Те же авторы [4416] исследовали поведение белков и аминов с длинными целями, получаемых в виде мономолекулярных пленок на поверхности раздела фаз воздух—вода, когда ниже этой поверхности вводилась кремневая кислота. Белки более прочно связывались при их изоэлектрической точке такое связывание может происходить между органическими катионными группами молекулы и заряженными участками на поверхности кремнезема и, кроме того, путем образования водородных связей. [c.980]

    В наиболее общем случае адсорбционные процесы в ЖАХ вызваны слабыми ван-дер-ваальсовыми силами. При сорбции на полярных адсорбентах, поверхность которых покрыта гидроксильными гру1шами, часто происходит образование более прочных водородных связей с молекулой адсорбата. В обоих случаях полностью исключаются кинетические ограничения в установлении сорбционных равновесий в системе — жидкая фаза - адсорбент. Наконец, между молекулой адсорбата и функциональными группами на 1юверхности адсорбента может протекать химическая реакция с образованием химической связи. Последствием такого взаимодействия может быть прочная, часто необратимая хемосорбция или образование новых химических соединений, отсутствовавших в разделяемой смеси. Как правило, химическое взаимодействие разделяемых веществ с поверхностью адсорбента является крайне нежелательным процессом, вероятность протекания которого учитывается при выборе условий разделения. Механизм хемосорбционного удерживания является неприемлемым для ЖАХ. [c.191]

    Рассмотрим теперь, какие межмолекулярные связи участвуют в образовании необратимого прочного межфазного адсорбционного слоя. Можно ожидать, что в образовании межмолекулярных связей будут участвовать те же типы связей, которые обеспечивают определенную конформацию молекул белка в растворе. Все эти типы связей электрической природы, но различно11 силы кулоновское взаимодействие, ван-дер-ваальсово взаимодействие и водородные связи. При денатурации молекул яичного альбумина разрываются внутримолекулярные водородные связи и ван-дер-ваальсовы ( гидрофобные ) связи, при этом образуются в соответствующих условиях межмолекулярные связи. [c.206]

    Прочность межфазных слоев иоливинилового спирта и желатины уменьшается с повышением температуры и при добавлении салицилата натрия. Это означает, что основными типами связей, скрепляющих пространственную структуру, оказываются водородные связи. В случае глобулярных белков (вторая группа полимеров), у которых прочность межфазных адсорбционных слоев обусловлена в основном гидрофобными взаимодействиями, повышение температуры упрочняет возникающую структуру. Подобное влияние температуры и денатурирующих агентов наблюдалось и ири исследовании объемного структурообразования в водных растворах рассмотренных полимеров. Таким образом, наблюдается полная аналогия механизмов образования прочных межфазных адсорбционных слоев и трехмерных (объемных) структур этих же высокомолекулярных ПАВ. [c.217]

    В отличие от полистирола зависимость Тс поликарбоната от концентрации исходного раствора проходит через минимум, после которого Тс возрастает с толщиной слоя. Это, по-видимому, связано с более сильным взаимодействием полярного полимера — поликарбоната с поверхностью стекла вследствие образования на границе раздела кроме ван-дер-ваальсовых еще и водородных связей. Это способствует созданию на поверхности рыхлых адсорбционных слоев. Разрыхление адсорбционного слоя приводит к понижению 7с. По мере увеличения толщины слоя Тс повышается. [c.94]

    Реакционная способность модифицированного стекла по сравнению с исходным сильно уменьшается. Это сказывается на спектрах адсорбционных соединений исходного и модифицированного стекла с мономерами. Опыт показывает, что в большинстве случаев при взаимодействии мономеров с обычной поверхностью стекла возникает водородная связь, которая проявляется на ИК-спектрах как смещение полосы ОН-групп в область меньших частот (рис. 5). Так, например, при взаимодействии метакриловой кислоты с новерхно- стью прокаленного стекла возникает водородная связь между карбоксильными группами метакриловой кислоты и ОН-группами поверхности стекла. [c.512]

    Молекулы воды в межслоевом пространстве монтмориллонита координируются обменными катионами и одновременно с помощью водородных связей взаимодействуют с кислородом поверхности и кислородом соседних молекул воды. ЯМР-исследования показали, что вода, адсорбированная на монтмориллоните и палыгорските, представляет собой подвижную адсорбционную фазу, и модель статической льдоподобной структуры не применима к ней. К такому же выводу пришел Дюкро. Поэтому о геометрической структуре адсорбированной воды можно говорить, если рассматривать ее в течение коротких промежутков времени, не превышающих время нахождения молекулы воды в равновесии. [c.71]


Смотреть страницы где упоминается термин Адсорбционное взаимодействие, тип водородная связь: [c.139]    [c.33]    [c.238]    [c.158]    [c.599]    [c.311]    [c.73]    [c.196]    [c.172]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.415 , c.468 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.415 , c.468 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2024 chem21.info Реклама на сайте