Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Противоионы и двойной электрический слой

    Современная теория строения двойного электрического слоя основана на представлениях Штерна. Она объединяет две предыдущие теории. Согласно современной теории слой противо ионо состоит из двух частей (рис. П. 13). Одна часть находится в непосредственной близости к межфазной поверхности и образует слои Гельмгольца (адсорбционный слой) толщиной б не более диаметра гидратированных иоиов, его составляющих. Другая часть противоионов находится за слоем Гельмгольца, в диффузной части (диффузный слой Гуи с потенциалом ф ), толщина I которой может быть значительной и зависит от свойств и состава системы. Потенциал в диффузной части двойного электрического слоя не может зависеть линейно от расстояния, так как ионы в нем распределены неравномерно. В соответствии с принятыми представлениями иотенциал в слое Гельмгольца при увеличении расстояния от слоя потенциалопределяющих ионов сни- [c.54]


    Впервые представление об образовании двойного электрического слоя было высказано Квинке (1859) и развитое работах Гельмгольца (1879). По этим представлениям, двойной электрический слой подобен плоскому конденсатору, одна обкладка которого находится в твердой фазе, другая — в растворе. Толщина конденсатора имеет порядок молекулярного радиуса. По Гельмгольцу, образование двойного электрического слоя происходит следующим образом. На поверхности коллоидных частиц адсорбируется преимущественно один из ионов, который и сообщает поверхности свой знак заряда. Под действием электростатических сил притяжения противоионы (или компенсирующие ионы) стремятся расположиться возможно ближе к ионам, адсорбированным на поверхности частиц. В результате образуются два слоя ионов, из которых один расположен на поверхности, другой — в растворе, на расстоянии молекулярного радиуса (рис. 93, /). Такая система ионов (в целом нейтральная) получила название двойного электрического слоя по Гельмгольцу. [c.314]

    Само по себе ядро мицеллы нерастворимо в данной среде и, следовательно, не сольватировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя сольватированы (рис. 126). Благодаря этому вокруг ядра создается ионно-сольватная оболочка. Толщина ее зависит от распределения ионов двойного слоя чем больше противоионов находится в диффузном слое, тем больше и толщина сольватной оболочки. Сжатие двойного слоя уменьшает степень сольватации ионов. В изоэлектрическом состоянии (дзета-потенциал равен нулю) сольватная оболочка вокруг ядра предельно тонка (порядка Ю м). Такие тонкие слои не защищают мицеллы от слипания при столкновении, в результате начинается агрегация частиц. Толщина сольватных слоев в устойчивых золях значительно больше и достигает 10 м. [c.327]

    Двойной электрический слой (ДЭС) состоит из заряженной поверхности с потенциалом фо и противоположно заряженной части слоя, в которой находятся противоионы (рис. 24). Одна часть противоионов примыкает непосредственно к поверхности, образуя плотный (адсорбционный) слой — слой Гельмгольца. Другая часть противоионов под действием теплового движения распространяется в глубь фазы, образуя так называемый диффузионный слой, или слой Гуи. [c.77]

    Прн больших ф4 потенциал перестает влиять на давление отталкивания. Это можно объяснить тем, что с ростом потенциала одновременно увеличивается притяжение противоионов двойного электрического слоя к поверхности, эффективный заряд которой поэтому почти не изменяется. [c.328]


    Следует отметить, что электростатическая составляющая расклинивающего давления в области малых потенциалов (VI. 100) сильно зависит от значения потенциала (пропорционально фв ), с ростом же потенциала эта зависимость становится менее заметной. При больших значениях потенциал перестает влиять на расклинивающее давление отталкивания. Это можно объяснить тем, что с ростом потенциала одновременно увеличивается притяжение противоионов двойного электрического слоя к поверхности, эффективный заряд которой поэтому почти не изменяется. [c.378]

    Электростатическая теория устойчивости дисперсных систем приложима к тем системам, устойчивость которых обеспечивается только электростатическим фактором. В реальных же дисперсных системах наблюдается в лучшем случае преобладание того или иного фактора устойчивости. Однако электростатический фактор устойчивости характерен для наиболее распространенных систем с водными средами, создающими условия для диссоциации. Механизм образования электростатического барьера связан с механизмом образования двойного электрического слоя поверхностная диссоциация вещества частиц, адсорбция электролитов, в том числе ионогенных ПАВ и ВМС, и ориентирование диполей молекул растворителя илн растворенных веществ. Так как электростатический барьер определяется, главным образом, электрическим потенциалом и толщиной двойного электрического слоя (VI. 103), то, очевидно, он будет возрастать с увеличением поверхностной диссоциации, количества адсорбируемых потенциалопределяющих ионов и прочности их закрепления, а также с уменьшением взаимодействия противоионов с поверхностью (увеличение толщины двойного слоя). При наличии на поверхности функциональных групп, обладающих слабыми кислотно-основными свойствами, значение потенциала и соответственно потенциального барьера зависит от pH среды. Электролит-стабилизатор должен иметь одии иои с достаточным сродством к веществу частицы (заряжение поверхности), другой—к растворителю (для обеспечения диссоциации электролита-стабилизатора и достаточной толщины двойного слоя). [c.332]

    Неподвижный адсорбционный слой содержит, как уже упоминалось, далеко не все противоионы, а лишь определенную их часть, которая не в состоянии целиком компенсировать заряд твердой поверхности, а способна лишь его понизить. Другими словами, в адсорбционном неподвижном слое в результате взаимодействия положительных и отрицательных зарядов остается не нейтрализованным некоторый потенциал, который является частью общего потенциала поверхности твердой фазы. Разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя называется электрокинетическим потенциалом. Этот потенциал обычно обозначают буквой (дзета) и потому называют дзета-потенциалом ( -потен-циал). [c.174]

    Эффект специфической адсорбции наблюдается и на незаряженной поверхности металла, т. е. в тех условиях, когда обмен ионами между металлом и раствором отсутствует. Адсорбированные ионы и соответствующие противоионы образуют двойной электрический слой, расположенный в непосредственной близости к металлу со стороны раствора. Ориентированные около поверхности металла адсорбированные полярные молекулы (ПАВ, растворителя) также создают двойной электрический слой. Скачок потенциала, отвечающий двойному электрическому слою при незаряженной поверхности металла, называется потенциалом нулевого заряда (п. н. 3.). Его значение принято выражать по водородной шкале (табл. 26).  [c.475]

    Вполне естественно предположить, что подобное строение двойного слоя возможно при отсутствии теплового движения ионов, Б реальных же условиях распределение зарядов на границе раздела фаз в первом приближении определяется соотношением сил электростатического притяжения ионов, зависящего от электрического потенциала фо, и теплового движения ионов, стремящихся равномерно распределиться во всем объеме жидкой или газообразной фазы. К такому выводу независимо друг от друга пришли Гун и Чепмен. Они предположили, что двойной электрической слой имеет размытое (диффузное) строение и все противоионы находятся в диффузной его части — в диффузном слое. Поскольку протяженность диффузного слоя определяется кинетической энергией ионов, то в области температур, близких к абсолютному нулю, все противоионы будут находиться в непосредственной близости к потенциалопределяющим ионам. [c.54]

    Уравнения (II. 109) и (II. ПО) учитывают специфическую адсорбцию только противоионов. При невысоких концентрациях электролита можно пренебречь единицей в знаменателе уравнения (II. 110). Таким образом, теория Штерна (II. ПО) и теория Гун — Чепмена (11.105) позволяют рассчитать соответственно заряд в плотном и диффузном слоях. Рассчитанные с учетом этих уравнений значения емкости двойного электрического слоя для различных концентраций электролитов удовлетворительно совпадают с результатами, полученными по данным электрокапиллярных измерений. [c.61]


    В катионной битумной эмульсии положительно заряженные ионы эмульгатора адсорбируются на поверхности битумных шариков, создавая адсорбционно-сольватный слой (АСС). Отрицательно заряженные противоионы притягиваются к поверхности из объема дисперсионной среды, образуя таким образом двойной электрический слой (ДЭС). Принципиальная схема двойного слоя представлена на рис. 14. Подобный же процесс имеет место и в случае анионной эмульсии. [c.71]

    Адсорбция поверхностно-активных веществ происходит при значениях потенциалов, лежащих в определенной области. При любом потенциале в этой области, кроме точки нулевого заряда, двойной электрический слой создается за счет сил электростатического Притяжения противоионов и сил адсорбции. Поэтому такой слой имеет сложное строение. Область потенциалов, в которой наблюдается адсорбция поверхностно-активных веществ, определяется сравнением электрокапиллярных кривых, снятых для чистого раствора и для раствора с добавкой адсорбирующихся веществ. Таким образом, по изменению формы электрокапиллярных кривых и величине потенциала нулевого заряда можно судить о строении двойного электрического слоя. [c.172]

    Согласно современной теории строения двойного электрического слоя непосредственно у поверхности коллоидной частицы золя образуется так называемый адсорбционный слой, который включает не только потенциалопределяющие ионы (знак которых противоположен знаку твердой фазы), но и часть противоионов, которые в обычных условиях считаются неподвижными и при дви- [c.173]

    Необходт1мо отметить, что противоионы двойного электрического слоя могут обмениваться на другие ионы того же знака, т, е. способны к ионному обмену. Особенно ярко это проявляется в специальных ионообменных материалах. [c.63]

    Ионообменная адсорбция из растворов наблюдается на поверхностях с достаточно выраженным двойным электрическим слоем. Подвижные противоионы электрического слоя способны обмениваться на другие ионы того же знака, находящиеся в растворе. Практический интерес к понообменной адсорбции обусловил широкие теоретические исследования этого явления и разработку методов синтеза специальных ионообменных сорбентов. [c.164]

    Сопоставляя соотношения (VI. 116), (VI. 117) и (VI. 119), можно сделать вывод, что в соответствии с теорией ДЛФО нейтрализационная коагуляция более характерна для систем с частицами, обладающими малым электрическим потенциалом. Особенно сказывается на коагуляции в таких системах специфическая адсорбция ионов добавляемого электролита, имеющих заряд, одноименный е зарядом противоионов двойного электрического слоя. Эти ионы, находясь в адсорбционном слое, резко снижают потенциал срд (VI. 117)—происходит нейтрализация фо-потенциала уже в адсорбционном слое. Так как при специфической адсорбции ионов возможна перезарядка поверхности частиц, то для нейтрализаци онной коагуляции характерна область между минимальной и максимальной концентрацией электролита. При введении электролита в количестве, превышающем некоторое максимальное значение, дисперсная система может перейти во вторую область устойчивости, в которой частицы будут иметь заряд, противоположный заряду частиц в первой области устойчивости. [c.335]

    Противоионы двойного электрического слоя могут в эквиваленпкзм количестве замещаться другими ионами того же знака. Этот процесс / олучил название ионного обмена, [c.62]

    Коагулирующее действие электролита на латексы, стабилизованные НПАВ, существенно отличается от их действия на системы с ионогенным стабилизатором. Согласно правилам коагуляции электролитами, астабилизующее действие на системы оказывает в основном ион, одноименный по знаку заряда с противоионом двойного электрического слоя. На латексы с неионогенпым стабилизатором наибольшее коагулирующее влияние оказывает анион электролита, поскольку анион сильнее дегидратирует неионогенное вещество в адсорбционном слое, разрушая водородные связи между молекулами воды и эфирным кислородом оксиэтиленовой цени. Степень дегидратации НПАВ электролитом определяется положением аниона в лиотропном ряду. [c.113]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива, Противоионы обмениваются на другие иоз1Ы того же знака. Повышение концентрацни раствора пр Шодит к вытеснению противононов нз диффузной в плотную часть двойного электрического слоя. Толщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой кот ,ентра-ции раствора (примерно 0,1 и.) все противоионы оказываются [c.331]

    Многозарядиые противоионы электролита имеют повышенную адсорбционную способность по сравнению с однозарядными и проникают в адсорбционную часть двойного электрического слоя в больших количествах. При этом порог коагуляции уменьшается не пропорционально величине заряда противоиона, а значительно быстрее. [c.335]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака (противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, дис узное строение. Кроме того, в создании двойного электрического слоя на границе металл — раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. Н. Фрумкина и др. [c.473]

    Уравнения (11.76) и (11.77) называют уравнениями электрокапиллярной кривой. Из них следует, что поверхностное натяи<ение при условии постоянства емкости двойного электрического слоя изменяется в соответствии с уравнением параболы (рис. 11.8). Вершина параболы (рис. И. 8) отвечает максимальному поверхностному натяжению Омакс, а сама парабола симметрична, что по физическому смыслу означает предположение равного сродства катионов и анионов, выступающих в роли противоионов, к поверхности, имеющей соответственно отрицательный и положительный потенциал. Уменьшение полол<ительного потенциала, как и отрицательного, ведет к увеличению поверхностного натяжения. Однако в реальных системах емкость двойного электрического слоя несколько изменяется с изменением потенциала и поэтому экспериментальные электрокапиллярные кривые обычно не являются симметричными. [c.49]

    Это уравиенне после двойного интегрирования позволяет получить соотношение, выражающее закон изменения поверхностного потенциала от расстояния в диффузной части двойного электрического слоя и от свойств раствора. Чтобы в полной мере представлять возможности соотнонюння (П. 87), лехсащего в основе теории двойного электрического слоя, необходимо напомнить основные допущения и предположения, сделанные Гун и Чепменом при его выводе двойной электрический слой является плоским, диэлектрическая проницаемость не зависит от расстояния х, ноны представляют собой точечные заряды (т. е. не имеют объема), при переводе противоионов из объема раствора в двойной электрический слой совершается работа только против электростатических сил. [c.56]

    Электрический потенциал и структура двойных электрических слоев мало зависят от размеров частиц. Однако увеличение удельной поверхности в дисперсной системе приводит к повышению концентрации противоионов двойного слоя,что в свою очередь может влиять на многие свойства системы, в том числе и на свойства этого слоя. Если противоионами в двойном электрическом слое являются Н+- или ОН -ионы, то наблюдается так называемый суспензионный эффект, сущность которого состоит в том, что значение рНс суспензии отличается от значения рНф выделенного из нее фильтрата. Количественно суспензионный эффект характеризуется величиной ДрНсэ = рНс—рНф, которая возрастает с увеличением концентрации дисперсной фазы в суспензии, а при постоянной массовой концентрации дисперсной фазы — с увеличением ее дисперсности, т. е. эффект повышается с увеличением межфазной поверхности в суспензии. Значение суспензионного эффекта уменьшается с повышением концеитрацпи электролитов в системе, что еще раз подтверждает указанную причину возникновения этого эффекта. Знак суспензионного эффекта (ДрНсэ) совпадает со знаком заряда поверхности (частиц, мембран). [c.343]

    Штерн попытался учесть влияние специфической адсорбции на электрический потенциал, обусловленной действием ковалентных сил дополнительно к электростатическим силам. Так как радиус действия сил такой адсорбции соизмерим с размером ионов, это дает основание учитывать их только для иоиов, входящих в плотный слой Гельмгольца. Как видно из рис. И. 13, плотность поверхностного заряда противоионов можно разделить на две части плотность заряда обусловленного монопонным слоем, представляющим собой слой Гельмгольца, и плотность заряда диффузного слоя Гуи. Общая поверхностная плотность заряда двойного электрического слоя равна сумме поверхностиых плотностей зарядов плотного и диффузного слоев  [c.60]

    В соответствии с теорией ДЛФО добавление эаектролнта в хяисперсную систему вызывает сжатие двойного электрического слоя у частиц, вследствие чего они могут подойти друг к другу на расстояния, на которых преобладают силы притяжения. Уменьшение толщины двойного слоя сопровождается обменом противоионов этого слоя на вызывающие коагуляцию ионы электролита, Сжатие двойного электрического слоя происходит как за счет уменьшения потенциала в результате специфической адсорбции нонов добавленного электролита на поверхности частиц, так и благодаря ограничению диффузии противоионов в раствор в связи увеличением ионной силы раствора. По преобладанию того нли иного механизма процесса коагуляции различают нейтрализаци-онную и концентрационную коагуляцию. Области преимущественного действия механизмов коагуляции можно оценить с помощью теории ДЛФО. [c.333]

    Приближенность соотношений теории ДЛФО заключается еще в том, что в них не учтена природа противоионов с одинаковым зарядом. Например, пороги коагуляции уменьшаются в ряду про-тивононов-катионов > N3+ > К+ > КЬ+ > Сз+ и противоио-нов-анионов С1 > Вг > N0 > I. Приведенные лиотропные ряды характеризуют сродство ионов к растворителю. Таким образом, чем иоиы более лиофобны, тем большим коагулирующим действием они обладают. Этот факт можно объяснить увеличением специфической адсорбции ионов этих рядов. Следует также учитывать вклад в коагулирующее действие противоионов, находящихся в диффузной части двойного электрического слоя. Чем [c.336]

    Концентрационная коагуляция происходит при увеличении содержания индифферентного электролита в дис[1ерсной системе. Как уже отмечалос1з ири рассмотрении двойного электрического слоя, с ростом концентрацни электролита в дисперсионной среде происходит сжатие диффузной части ДЭС и снижение величины потенциального барьера. Одновременно в результате сжатия диффузного слоя увеличивается также глубина второго минимума, что приводит к возрастанию вероятности дальней агрегации. Порог концентрационной коагуляции зависит от валентности г и в случае шдрофобных поверхностей для одно-, двух- и трехзарядных противоионов относится как 1 64 729. [c.73]

Рис. 8.Схема строения двойного электрического слоя (А) и изменения валичин и J- потенциалов (Б) а - потенциалоопрэделящие иони б- адсорбционный слой противоионов в- диффузный слой Рис. 8.Схема <a href="/info/602564">строения двойного электрического слоя</a> (А) и изменения валичин и J- потенциалов (Б) а - потенциалоопрэделящие иони б- <a href="/info/761010">адсорбционный слой противоионов</a> в- диффузный слой
    Теория двойного электрического слоя получила развитие в работах Фрумкина и Дерягина. Согласно их представлениям, внутреннему слою ионов двойного электрического слоя, получивших название потенциалобразующих, плотно примыкает некоторая часть противоположно заряженных ионов (рис. 50, а), называемых против о ионам и. Эта часть противоионов передвигается вместе с частицей и образует слой толщиной 6", называемый адсорбционным. На рис. 50, а граница между такой частицей и средой обозначена пунктиром. Остальные противоио-ны располагаются в дисперсионной среде, где они распределены, как правило, диффузно. [c.166]

    Однако прочно к поверхности ионы К+ не присоединяются (они образуют с поверхностью растворимые соединения), а так как их концентрация около поверхности больше, чем в растворе, то они диффундируют в сторону меньшей концентрации, т. е. от поверхности в раствор. На поверхности кристалла Ag l возник двойной электрический слой (рис. 36), состоящий из внутренней обладки, или адсорбционного слоя (ионы 1 ), и наружной обкладки, или слоя противоионов (ионы К+). Часть противоионов связана с поверхностью относительно прочно и входит в плотный слой остальные противоионы, со-вершаюшие тепловое движение около поверхности, составляют диффузную часть ДЭС (диффузный слой). Распределение противоионов между плотной и диффузной частями ДЭС определяется соотношением между электростатически.м притяжением ионов к поверхности и их диффузией в раствор последняя определяется тепловым движением ионов и зависит от разности концентраций в ДЭС и объеме раствора. [c.65]

    С развитием теории электролитической диссоциации и введением понятия об ионах появилась теория, развитая в работах Гуи (1910), согласно которой двойной электрический слой имеет диффузное строение. Дело в том, что под воздействием двух взаимно противоположных сил (электростатического притяжения и теплового движения частиц жидкости) противоионы образуют около твердой поверхности адсорбента (коллоидной частицы) диффузную ионную атмосферу (рис. 93, //). Приче.м концентрация противоионов, наибольшая около заряженной поверхности твердой фазы, убывает по мере уВбЛНЧбпия расстояния от границы раздела фаз по направлению внутрь раствора. [c.314]

    Из всего вышесказанного не следует делать вывод о том, что основная причина коагуляции заключается в достижении некоторого постоянного для всех случаев критического дзета-потенциала. Исследования последних лет, проведенные советскими учеными В. В. Дерягиным и его сотрудниками, показали, что коагулирующее действие электролитов заключается не столько в непосредственном уменьшении сил отталкивания между коллоидными частицами через понижение дзета-потенциала, сколько в том, что изменение строения двойного электрического слоя и сжатие диффузной его части, обусловленное прибавлением электролита-коагулянта, влечет за собой понижение расклинивающего действия гидратных (сольватных) оболочек диффузных ионов, разъединяющих коллоидные частицы. Иными словами, необходимое для коагуляции данного золя понижение расклинивающего действия (или давления) сольватных оболочек достигается уменьшением диффузного слоя противоионов, что ведет к соответствующему понижению величины дзета-потен-адиала. [c.371]

    В случае ионогенных ПАВ в дополнение к дегидра-таци 1 действует фактор, связанный с изменением состояния двойного электрического слоя, образованного на поверхности ионами адсорбированного ПАВ. При введении электролитов повышается ионная сила раствора и происходит сжатие диффузной части двойного электрического слоя, в результате чего часть противоионов входит в плотный штерновский слой, т. е. происходит понижение эффективной степени диссоциации поверхностно-активного электролита. Благодаря этому понижается электростатическое отталкивание, препятствующее вхождению поверхностно-активных ионов в одноименно заряженный адсорбционный слой. [c.24]

    Мицеллы ионогенных ПАВ электрически заряжены вследствие диссоциации полярных групп. Благодаря сильному электростатическому притяжению значительное число противоионов (до 80 % и более) связано с поверхностью мицеллы и составляет с ней единое целое с кинетической точки зрения, образуя штерновскую часть двойного электрического слоя. Остальные противоионы образуют диффузную ионную оболочку (слой Гуи — Чепмена). По расчетам Стигтера, толщина слоя Штерна на поверхности ионных мицелл — это величина порядка 0,215—0,4 нм, что примерно соответствует размеру полярных групп. В целом мицеллы ионогенных ПАВ могут рассматриваться как своеобразные крупные многозарядные ионы (обычно они имеют 20—30 электрических зарядов). [c.41]


Смотреть страницы где упоминается термин Противоионы и двойной электрический слой: [c.283]    [c.283]    [c.330]    [c.330]    [c.45]    [c.51]    [c.63]    [c.171]    [c.303]    [c.174]    [c.314]   
Смотреть главы в:

Химия кремнезема Ч.1 -> Противоионы и двойной электрический слой




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Противоионы



© 2025 chem21.info Реклама на сайте