Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы обжигание

    Диоксид серы. Сернистая кислота. Диоксид (д в у-окись) серы SOa образуется прн сжигании серы в воздухе или кислороде. Он получается также при прокаливании на воздухе ( обжигании ) сульфидов металлов, напрнмер железного колчедана  [c.385]

    Растворы мышьяковистого ангидрида имеют явственный сладковатый металлический вкус и оказывают слабую кислую реакцию. При подмеси кислот и щелочей растворимость увеличивается. Это как бы показывает уже способность мышьяковистого ангидрида образовать соли с кислотами и щелочами. И действительно, известны его соединения с соляною кислотою, с серным ангидридом и си щелочными окислами. Прибавляя к раствору мышьяковистой кислоты азотносеребряной соли, не замечают никакого изменения, пока некоторое количество мышьяковистой кислоты не будет насыщено щелочью, напр., аммиаком. Тогда происходит осадок ортомышьяковисто-серебряной соли Ag AsO . Этот осадок желтого цвета, растворим в избытке аммиака, безводен и ясно показывает, что мышьяковистая кислота трехосновна, т.-е- отличается в этом отношении от фосфористой кислоты, в которой только два пая водорода могут быть замещены металлами. Слабый кислотный характер мышьяковистого ангидрида подтверждается образованием солеобразных соединений с кислотами. Наиболее замечательный пример в этом Отношении составляет безводное соединение, отвечающее серной кислоте и имеющее состав As O SO Оно образуется при обжигании мышьяковистого колчедана в тех пространствах, где сгущается мышьяковистый ангидрид, причем часть SO превращается в SO на счет кислорода воздуха. Указанное соединение представляет бесцветные таблички, которые при действии воды и влажности разлагаются, выделяя серную кислоту и образуя мышьяковистый ангидрид. [c.183]


    В 1756 г. М. В. Ломоносов, повторив опыт Р. Бойля, раньше А. Лавуазье высказал мысль, что увеличение массы металлов при обжигании следует приписать присоединению частиц воздуха. И в отличие от своих современников он исключил огненную материю из числа химических агентов (Ломоносов М. В. Полн. собр. соч., т. 10, с. 392),— Прим. ред. [c.47]

    Ломоносов впервые сформулировал этот закон в 1748 г., а экспериментально подтвердил его на примере обжигания металлов [c.18]

    Великая заслуга Лавуазье заключалась в устранении старых предрассудков и умелом применении научных принципов к исследованию химических процессов. Он получил в наследство от флогистиков богатый запас важных фактов, которые им самим бьши лишь мало дополнены в химическом смысле зато он сумел разобраться в этих фактах с совершенно новой, до него не известной точки зрения и оказался также в состоянии дать надлежащее объяснение многим не выясненным до него химическим процессам. Мы не ошибемся, если припишем успешность его работы физическому и математическому развитию его ума, сумевшего заблаговременно освободиться от оков флогистической гипотезы. Как физик Лавуазье раньше всего должен был выяснить весовые изменения, например, при обжигании металлов свойства же продуктов его менее интересовали. Этим объясняется тот факт, что Лавуазье не делал никаких самостоятельных химических открытий заслуги же его как верного и всестороннего толкователя чужих наблюдений не могут быть оспариваемы. [c.57]

    Параллельно с описанными опытами Лавуазье вел другие исследования. Все они, однако, были подчинены общей цели и касались систематического обследования явлений, связанных с горением различных тел, обжиганием металлов и других веществ, сопровождающихся выделением или поглощением воздухообразных веществ. В связи с этим же он заинтересовался и действием на различные вещества сверхвысоких температур. В то время считали, что такие сверхвысокие температуры очень легко получить при помощи больших зажигательных стекол. В 1772 г. Лавуазье вместе с несколькими сотрудниками построил большую зажигательную машину с двумя линзами, одна из которых имела диаметр более 120 см. [c.342]

    Он повторил опыт обжигания металлов, но в отличие от опытов [c.143]

    Под влиянием алхимической традиции Бойль изучал явления горения, обжигания металлов и дыхания он обнаружил, что в этих процессах принимает активное участие какая-то составная часть воздуха. Это наблюдение, будь оно несколько углублено, привело бы его к открытию кислорода хотя этого и не произошло, все же наблюдение Бойля имело значение для правильного истолкования тех нге явлений в следующем столетии. Бойлю также принадлежит заслуга освобождения этого наблюдения от пелены, в которую его закутали последователи алхимии. Для Бойля было ясно, что химические реакции связаны с соединением весомых элементов от его наблюдательности также не ускользнуло, что при горении органических веществ, таких, как винный спирт, воск, бальзамы и т. д., всегда образуется вода. Кроме того, пользуясь весами, он показал, что при обжигании металлов происходит увеличение веса он также наблюдал почернение хлористого серебра, но причину этого видел в действии воздуха, а не света. [c.91]


    Проблема обжигания металлов волновала Бургаве, так же как и многих других исследователей в этот период, однако ему не удалось прийти к правильному объяснению роли воздуха при превращении металлов в извести. Правда, он выступал как противник предположения, что во время обжигания приобретается весомая теплота, как то утверждали различные исследователи вслед за Бойлем, но этого было недостаточно для того, чтобы разъяснить проблему. В противоположность господствовавшему тогда мнению Бургаве утверждал, что между веществами, не сходными друг с другом, имеется большее стремление к химическому соединению [c.124]

    Далее Ломоносов приводит пример обжигания металла в пламени горящей серы и констатирует, что при этом металл действительно разбухает и увеличивается в весе (Там же, стр. 47). [c.267]

    Ломоносов впервые сформулировал этот закон в 1748 г., а экспериментально подтвердил его на примере обжигания металлов в запаянных сосудах в 1756 г. [c.16]

    В одном из таких опытов Г. Шталь, расплавив в железном сосуде олово, нагрел его до начала каления. На поверхности металла появился черноватый порошок (оксид олова). Затем он снял с огня сосуд, добавил в него немного свечного сала и тщательно перемешал норошковатое вещество вновь превратилось в прежнее состояние. По мнению Г. Шталя, при обжигании таких металлов, как олово, железо, свинец, медь, королек сурьмы, из них изгоняется флогистон, и они рассыпаются в порошок, ио к ним ничего не присоединяется этот порошок приводят в прежнее состояние добавлением угля пли жирных веществ при перемешивании. [c.50]

    Казалось, напрашивался вывод о том, что в увеличении массы при обжигании основную роль играет воздух . Для проверки наблюдаемых явлений М. В. Ломоносов поставил опыты по обжиганию металлов в пустоте . Результаты этих опытов до нас пе дошли. Можно только предполагать, что он вследствие несовершенства экспериментальной техники, бывшех в его распоряжении, мог наблюдать увеличение массы и после кальцинации металлов в безвоздушном прострапстве. М. В. Ломоносов пользовался одноцилиндровым поршпевым бесклапанным воздушным насосом Лейпольда, позволявшим получать только очень небольшое разрежение давление воздуха понижалось всего лишь до 15—20 мм рт. ст. Естественно, что нагревание в такой пустоте легкоокисляемых металлов (свинца, олова) сопровождалось их окислением и, следовательно, увеличением массы. Чтобы объяснить это, М. В. Ломоносов прибег к помощи ударной теории тяготения, сторонниками которой были Р. Декарт, X. Вольф По их мнению, некая тонкая материя толкает тела к центру земного шара. Разделяя эту ошибочную точку зрения, М. В. Ломоносов полагал, что вследствие уничтожения сцепления частиц кальцинированием, нх поверхности, ранее закрытые взаимным соприкосновением, оказываются уже свободно подверженными тяготи-тельной жидкости и потому сильнее пригнетаются к центру земли  [c.87]

    Место флогистического учения, носившего характер окостеневшей догмы, заняла теория горения Лавуазье с кислородом в качестве центрального пункта. Преобладающее положение в химии заняла так называемая анти-флогистическая система, коренным образом изменившая взгляды на горение и обжигание и связанные с этими явлениями понятия о химическом составе важнейших классов тел. Мы здесь в самом деле видим реформу химии в полнейшем смысле слова все те явления, при которых раньше предполагалось выделение флогистона, по теории Лавуазье, основаны на присоединении кислорода и наоборот, процессы, объяснявшиеся присоединением флогистона, по учению Лавуазье, сопровождаются вьщелением кислорода. Вещества, считавшиеся, по теории флогистона, элементами (например, серная и фосфорная кислоты, металлические окислы), оказались, по Лавуазье, сложными телами те же тела, которые рассматривались флогистиками как соединения, например, металлы, сера, фосфор, — приняты Лавуазье в качестве элементов. [c.56]

    Здесь нелишне будет снова обратить внимание на главные противоречия, опутавшие теорию флогистона во время открытия кислорода (около 1775 г.) и ускорившие ее падение. Фактов, не объясненных этой теорией, было много. Химики, считавшие водород флогистоном (а таких было немало), встретились с большим затруднением в разрешении вопроса, куда девается вьщеляюищйся флогистон при обжигании металлов или сгорании серы, фосфора, угля и т. п. в закрытых помещениях. Восстановление металлических окислов объяснялось, с флогистической точки зрения, по-видимому, довольно недурно, но при этом совершенно игнори- [c.56]

    Е классических работах А. Лавуазье было н1 спронергку-то учение о флогистоне и утверждена кислородная теория. Факт за фактом собирал Лавуазье для утверждения кислородной теории и для борьбы с теорией флогистона. За изучением процесса горения серы, фосфора последовало изучение тепловых явлений, но только после определения состава воды Лавуазье окончательно выяснил центральную роль кислорода в химических процессах. Лавуазье провел количественные опьхты по сжиганию серы и фосфЪра в воздухе, изучил обжигание свинца и олова, как это в свое время делали Бойль и Ломоносов, и пришел к выводу при обжигании происходит соединение металла с воздухом. Затем Лавуазье поставил новые опыты и показал, что для полного обжигания металла требуется определенное количество воздуха, что дефлогистированный воздух (т. е. кислород) и есть та часть воздуха, которая соединяется с металлом при обжиге. Вскоре после выхода в свет Начального курса химии (1789 г.) кислородная теория Лавуазье совершила победное шествие по странам Европы и Америки. [c.65]


    С давних пор считалось, что при обжигании на воздухе металлы умирают, превращаясь в землю или известь (лат. alx), поэтому процесс обжига металлов стал называться кальцинацией. Исходя из общих представлений о горении как о распаде веществ, кальцинацию объясняли как распад металла на известь и некоторые летучие продукты. Роль воздуха при этом игнорировалась, несмотря на то что с давних пор некоторые ученые (например, Леонардо да Винчи) указывали, что без воздуха горение невозможно. [c.32]

    Кроме двух уже названных главнейших представителей, выдающимися представителями ятрохимического направления были Сала, Тюрке де Майерн, Либавий, Кроль, Ван Минзихт, Сильвий и другие. Это направление способствовало прогрессу химии не только благодаря своим более правильным взглядам на некоторые общие явления, как, например, признание аналогии между процессами горения, обжигания металлов и дыханием, объяснение химического соединения на основе сил взаимодействия, возникающих между его составными частями ятрохимикам удалось приготовить и открыть различные препараты, важные для фармации. В этой [c.64]

    С давних времен процесс обжигания металла на воздухе, или кальцинация , т. е. превращение металла в известь (от alx — известь ), сопоставляли с процессами горения дерева, угля и других горючих тел, в результате которых также оставалась земля (зола). Горение же таких тел рассматривалось как разрушение или распад тела с выделением летучих продуктов. Роль воздуха в процессах горения оставалась невыясненной, несмотря на то что в металлургической практике с древнейших времен применялось дутье для усиления пламени, а металлурги и естествоиспытатели хорошо знали, что для питания огня необходим воздух (еще в XV в. об этом писал Леонардо да Винчи см. стр. 132). Не уделялось никакого внимания и выяснению природы летучих продуктов горения. Лишь Ван-Гельмонт в XVII в. указал, что в результате горения дерева и угля образуется лесной дух (см. стр. 154). [c.199]

    Иоахим Юнгиус (1587—1657) проводил атомистические взгляды в Лекциях по физике (1629—1631) и Сокращенном изложении физики (1636). Он применял весы в некоторых опытах и заметил увеличение веса при обжигании металлов. Его корпускулярная теория имела отвлеченный характер, что довольно сильно сближало ее с метафизикой материалистов древности и натуралистов Возрождения. Корпускулярная теория Юнгиуса имеет большую аналогию с теорией Бойля [c.95]

    Роберт Гук (1638—1703). Был сторонником Бойля. Принадлежал к той немногочисленной группе экспериментаторов, которые в XVII в. отметили увеличение веса при обжигании металлов и подчеркнули роль воздуха в этой реакции, но не смогли выяснить при этом истинную роль кислорода. [c.96]

    В предшествующие периоды западные алхимики и ятрохимики делали попытки объяснить процессы, протекающие при горении, обжигании металлов и дыхании, но сущность этих процессов оставалась неразгаданной и недоступной для экспериментальных исследований. Как раз эти-то процессы и стали отправным пунктом для создания единой теории, охватывающей все явления, относящиеся к превращению материи, и известной под названием теории флогистона. [c.107]

    Шталь имел предшественника в лице Бехера, который называл жирной землей составную часть горючих тел. Но термин флогистон получил большее распространение как благодаря работам самого Шталя, так и потому, что его теория объединяла многочисленные сведения о горении и обжигании. Утверждение, что в этих реакциях теряется некая составная часть горючих тел, противоречило тому хорошо установленному различными исследователями в XVII в. факту, что при обжигании металлов происходит увеличение веса. Уже говорилось, что такое увеличение обнаружили Ж. Рей, Мейов, Бойль и другие и даже указывали на участие воздуха в обжигании металлов, но основатель теории флогистона не придал большого значения этому факту, а его последователи, чтобы предупредить возражения, приписали флогистону отрицательный вес. Эта уловка для приспособления теории к фактам показывает, насколько мало химические исследования даже в XVIII в. прониклись духом галилеевского экспериментального метода. [c.107]

    Идеи Шталя о явлениях горения и обжигания металлов, а также о природе тел изложены в трудах Основания зимотехпики или общая теория брожения Бехеров пример и Основания догматической и экспериментальной химии  [c.108]

    И дыхания. Напомним, что в 1774 г. Лавуазье опубликовал статью О природе начала, которое соединяется с металлами во время их обжигания и увеличивает их вес уже само заглавие статьи объясняет смысл исследования. В другой статье (1776) О существовании воздуха в селитряной кислоте и о способах разрушения и воссоздания этой кислоты отдавая должное Пристли за его исследование селитряной кислоты, Лавуазье не смог умолчать о том, что оно противоречит утверждению самого английского химика, считавшего атмосферный воздух соединением селитряной кислоты с землей. Обсуждая опыты Пристли, Лавуазье заключает, что не селитряная кислота входит в состав воздуха, а, наоборот, воздух входит в нее как составная часть . В 1777 г. Лавуазье внес решающий вклад в теорию горения своими тремя статьями (см. ниже), которые вызвали отклики во всем химическом мире эти статьи были написаны всего лишь через три года после того, как Пристли сообщил о своем открытии дефло-гистированного воздуха. Понятно, что оба ученых, открывших этот воздух, оставаясь даже приверженцами теории флогистона, отстаивали свой приоритет в открытии кислорода. Но без исследований Лавуазье процессов горения это открытие не дало бы химии такого толчка для дальнейшего развития. [c.119]

    Деятельность Макера как химика наряду с его работой как преподавателя была посвящена решению технических проблем, главным образом операциям, относящимся к крашению тканей. Открыл желтое синь-кали (1749). Теория флогистона имела в его лице ревностнвго сторонника, который считал достаточным предположение, что увеличение веса, наблюдающееся во время обжигания металлов, вызвано потерей флогистона, обладающего отряцательным весом. Но не все химики, даже и среди второстепенных, были удовлетворены таким объяснением, потому что флогистон, подобно теплороду, ускользал от всех попыток выделить его, [c.122]

    Михаил Васильевич Ломоносов (1711—1765). Россия даже в XVIII в. не была в стороне от химических исследований Одним из самых видных представителей химии был Ломоносов, чья труды были извлечены из забвения Б. Н. Меншуткиным и М. Шпетером, опубликовавшими на немецком языке некоторые его физико-химические сочинения из них следует, что еще до Лавуазье Ломоносов высказал идею, согласно которой увеличение веса, проявляющееся при обжигании металлов, следует приписать частицам воздуха. В противоположность Лавуазье, считавшему теплоту весомой Ломоносов утверждал, что она представляет собой форму движения. Он высказал также оригинальные идеи относительно корпускулярного строения материи [c.128]

    Хотя в XVII в. химия Б теоретическом отношении прогрессировала крайне медленно, процесс накопления нового фактического материала неуклонно продолжался. Потребности расширя-юш,егося производства выдвигали перед химиками новые задачи, требовавшие решения. Одной из таких задач, возникших в связи с быстрым развитием металлургии, было научное объяснение процессов восстановления металлов при их получении из руд и явлений при обжигании металлов. В практическом отношении эти вопросы были давно решены, но не имели сколько-нибудь удов.ттет-ворительного объяснения, что естественно отражалось и на развитии технологических приемов металлургии и обработки металлов. Считали, например, что при окислении (прокаливании на воздухе) металл умирает , превращаясь в мертвую землю (окалину, известь, золу), а при восстановлении из нее вновь возрождается. [c.199]

    Рядом основательных и остроумных доводов Ломоносов опровергает эту фантастическую концепцию. В 31 диссертации он обсуждает, в частности, известные опыты Бойля (см. стр. 211) над прокаливанием металлов и его заключение о том, что увеличение веса металла при его обжиге обусловлено присоединением к нему материи огня . По этому поводу Ломоносов пишет, что почти что все опыты его (Бойля) над увеличением веса при действии огня сводится к тому, что весом обладают либо части пламени, сжигающего тело либо части еоз5г/а а (курсив наш.—Я. Ф.), во время обжигания проходящего над прокаливаемым телом Появление в печати диссертации Ломоносова Размышления о причине теплоты и холода вызвало критические замечания и даже нападки на ее автора со стороны некоторых последователей теории невесомых флюидов в Германии. Очевидно, что [c.267]

    Обжигание металлов подчинено точно тем же законам, и Макёр совершенно правильно рассматривает его как медленное горение...  [c.349]

    В 1773 году выдающийся французский ученый А. Лавуазье, повторив опыты с обжиганием металлов в запаянных сосудах, пришел к тем же выводам, что и Ломоиосов, и занялся количественным определением состава воздуха. [c.5]

    Обыкновенное соединение мышьяка есть твердый, в жару летучий мышьяковистый ангидрид As O , соответствующий фосфористому и азотистому ангидридам. ЭтО сильно ядовитое, бесцветное и сладковатое вещество общеизвестно под названием мышьяка или белого мышьяка. До сих пор не известно гидрата, ему соответствующего нагретые растворы, охлаждаясь, выделяют непосредственно кристаллы мышьяковистого ангидрида. Приготовляется в технике преимущественно для применения в красильном деле, потом как средство, употребляемое повсюду для отравы мышей, отчасти как лекарство и как средство для приготовления всех других мышьяковистых соединений. Он получается, как побочный продукт, при обжигании кобальтовых и других руд, содержащих мышьяк. Мышьяковистый колчедан иногда нарочно обжигают для добывания мышьяковистого ангидрида. Когда мышьяковистые металлы накаливаются на воздухе, т. е. обжигаются, то сера и мышьяк переходят в окислы Аз О и 50 . Первый тверд при обыкновенной температуре, последний газообразен, а потому в холодных частях труб, отводящих происходящие пары, мышьяковистый ангидрид осаждается в виде налета. Для собирания его устраивают в вытяжных трубах особые ловушки (сгустительные камеры). При перегонке собранного в них осадка получают Аз О в виде стекловидной некристаллической массы, составляющей одно из видоизменений мышьяковистого ангидрида, котор й известен также в кристаллическом виде — в двух формах. В форме правильной системы, октаэдрами, он является при возгонке, т.-е. тогда, когда быстро переходит из парообразного состояния [513] [c.182]

    Селен получен Берцелиусом в 1817 г. из того налета, который собирается в первой камере при приготовлении- серной кислоты из фалунских колчеданов некоторые другие колчеданы точно так же содержат в себе малую подмесь селена в Гарце найдены некоторые селенистые металлы, в особенности селенистый свинец, селенистая ртуть, серебро, медь, но малыми количествами. Главным источником для его добычи служат колчеданы и обманки, в которых селен отчасти заменяет серу. При обжигании их образуется SeO , который сгущается и (отчасти или вполне) от SO восстановляется в холодных частях приборов, назначенных для обжигания. Для открытия селена в рудах и налетах служит чаще всего простое нагревание пред паяльною трубкою на угле, причем развивается характеристический редечный запах. Селен представляет два видоизменения, как сера одно аморфное, нерастворимое в сернистом углероде, а другое кристаллическое, хотя слабо (в 1000 ч. при 45° и в 6000 при 0°) растворимое в сернистом углероде и выделяющееся из растворов в одноклиномерных призмах. Если высушить красный осадок, полученный чрез действие SO на SeO то образуется бурый порошок, имеющий уд. вес 4, 26 при нагревании цвет его меняется, и он плавится в металлическую массу, при охлаждении блестящую. Смотря по тому, как быстро произошло охлаждение. Se получает при этом различные свойства быстро охлажденный, он остается аморфным, имеет уд. вес такой же, как и порошок (4,28) при медленном охлаждении он становится кристаллическим и непрозрачным, растворим в сернистом углероде и тогда имеет уд. вес 4,80. В этом виде он плавится при 217° и остается постоянным, а из аморфного [c.231]


Смотреть страницы где упоминается термин Металлы обжигание: [c.14]    [c.116]    [c.137]    [c.138]    [c.152]    [c.10]    [c.348]    [c.4]    [c.344]    [c.104]    [c.105]    [c.184]    [c.203]    [c.214]   
История химии (1975) -- [ c.64 , c.116 , c.152 ]

История химии (1966) -- [ c.65 , c.116 ]




ПОИСК







© 2024 chem21.info Реклама на сайте