Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкозо фосфат, превращение

    Глицеральдегид-З-фосфат-последний углевод в цепи превращений глюкозы. Дальнейшим превращениям подвергаются органические кислоты, которые находятся в диссоциированной форме, поэтому наряду с названием свободных кислот используют также название их анионов, например 3-фосфоглицерат, пируват и др. [c.330]

    Важный биологический процесс, при котором в результате превращений глюкозы создаются запасы энергии, называется гликолизом (схема приведена ниже). Общий путь использования некоторых углеводов в качестве источника питания начинается от глюкозо-6-фосфата, который образуется при фосфорилировании свободной глюкозы аденозинтрифосфатом (АТР, разд. 19.3). [c.277]


    Глюкозо-6-фосфат под действием фермента глюкозофосфат — изомеразы подвергается изомеризации — превращению в фруктозо-6-фосфат. Реакция обратима и сдвинута в сторону фруктозо-6-фосфата. [c.205]

    Первый раздел Практикума должен помочь студентам освоить методические приемы и основы аналитической биохимии. Он содержит описание основных принципов и методов концентрационного анализа, принятых в биохимии (спектрофотометрического, колориметрического, манометрического), в частности, для количественного определения гликогена, глюкозы, неорганического фосфата, фосфорных эфиров углеводов, молочной и пировиноградной кислот. В раздел включены работы, посвященные анаэробному превращению углеводов. Каждая задача, выполняемая студентом, предусматривает анализ чистоты исходного препарата углевода или его фосфорного эфира, получение ферментного препарата (гомогената или экстракта ткани), постановку биохимического эксперимента, количественную оценку результатов. Количественное определение веществ проводится несколькими методами, результаты сопоставляются. Так, выполняя задание по теме Превращение фруктозо-1,6-дифосфата в молочную кислоту , студент анализирует фруктозо-1,6-дифосфат по фруктозе и по фосфату, молочную кислоту определяет спектрофотометрическим и колориметрическим методами. Подобным образом выполняются работы, связанные с превращением других фосфорных эфиров углеводов, гликогена, глюкозы. [c.5]

    ПРЕВРАЩЕНИЕ ГЛЮКОЗО-1-ФОСФАТА В ГЛИКОГЕН [c.58]

    Пробы 5 и 6 ставят для учета нарастания неорганического фосфата в процессе инкубации за счет возможного фосфатазного расщепления глюкозо-1-фосфата. Количество неорганического фосфата, определенное в этих пробах, вычитают из 1—4 проб. На основании полученных данных можно рассчитать процент превращения глюкозо-1-фосфата в гликоген под влиянием фосфорилазы а и фосфорилазы Ь в исследуемых мышцах, выражая прирост неорганического фосфата в микромолях в минуту на 1 г сырого веса ткани. [c.59]

    В работе предлагается определить содержание сахара в крови и процент превращения глюкозо-1-фосфата в гликоген в мышцах под влиянием фосфорилазы а я Ь после введения животному адреналина. [c.59]

    ПРЕВРАЩЕНИЕ ГЛЮКОЗО-1-ФОСФАТА В ГЛЮКОЗО-6-ФОСФАТ [c.60]

    ПРЕВРАЩЕНИЕ ГЛЮКОЗО-6-ФОСФАТА ВО ФРУКТОЗО-6-ФОСФАТ [c.61]

    ПРЕВРАЩЕНИЕ ФРУКТОЗО-6-ФОСФАТА В ГЛЮКОЗО 6-ФОСФАТ [c.63]

    Работы выполняют согласно методике, описанной на с. 61, за исключением того, что в качестве субстрата используют З-Ю М раствор фруктозо-6-фосфата. О превращении фруктозо-6-фосфата судят по его убыли и приросту глюкозо-6-фосфата. [c.63]


    ПРЕВРАЩЕНИЕ ГЛЮКОЗО-6-ФОСФАТА В ГЛЮКОЗУ [c.65]

    Анализ чистоты препарата глюкозо-1-фосфата и его превращение в глюкозо-6-фосфат. [c.503]

    В начале этой главы мы уже говорили о превращении глюкозы в этанол и диоксид углерода (рис. 18-1). Одна из основных стадий этого процесса состоит в расщеплении фруктозо-1,6-дифосфата на фосфодиоксиацетон и глицеральдегид-З-фосфат. Данная реакция обратима и при участии соответствующих ферментов может привести к образованию фруктозо-1,6-дифосфата. [c.74]

    Живые организмы не могут существовать без энергии, и поэтому в цепи реакций брожения наиболее важное значение имеет реакция, обусловливающая образование АТР. В случае молочнокислого брожения и в большинстве других типов брожения такой реакцией является окисление глицеральдегид-З-фосфата в 3-фосфоглицерат. Окисление альдегида в карбоновую кислоту — реакция сильно экзергоническая, сопряженная с синтезом АТР. Поскольку из каждой молекулы глюкозы образуются две молекулы триозофосфата, при брожении на каждую молекулу израсходованной глюкозы образуются две молекулы АТР. Этого вполне достаточно для поддержания жизни у бактерий, если достаточно количество сбраживаемого сахара. Анаэробное превращение глюкозы в лактат — лишь один из примеров множества различных процессов брожения, которые мы рассмотрим в гл. 9. [c.85]

    Процесс превращения РЕР в глюкозо-1-фосфат представляет собой обращение части гликолитической последовательности. Поэтому его имеет смысл рассматривать вместе с обращением всей последовательности гликолиза, начиная с молочной кислоты. Эта реакция, которая но- [c.481]

    Система, регулирующая образование и распад гликогена в мышцах животных, относится к числу наиболее хорошо изученных систем, контролирующих метаболические процессы [47—49]. Эта система схематически показана на рис. 11-10. Жирной прерывистой линией указано превращение гликогена в глюкозо-1-фосфат, катализируемое гликогенфосфорилазой (гл. 7, разд. В, 5 гл. 8, разд Д, 3,д). [c.507]

    Если исходным энергетическим субстратом служит глюкоза, первое превращение, которому она подвергается, — фосфорилирование. В результате образуется глюкозо-6-фосфат — метаболически активная форма глюкозы. Если исходный энергетический субстрат — лактоза, первым шагом на пути метаболизирования является ферментативное расщепление лактозы с помощью р-га-лактозидазы на /)-галактозу и D-глюкозу. 1)-галактоза затем подвергается фосфорилированию, приводящему к образованию i)-ra-лактозо-1-фосфата. Последний подвергается серии ферментативных превращений с участием УТФ в качестве кофермента, в результате которых превращается в глюкозо-1-фосфат. [c.210]

    При фосфоролизе группы ОРО3Н2 присоединяются к глюкозным группам гликогена в положении 1, что ведет к распаду гликогена на молекулы Глюкозо-1-фосфата. Последний, при действии фосфатазы печени, отщепляет фосфорную кислоту и дает глюкозу, которая, при действии гексокиназы, снова фосфорилируется, давая глюкозо-6-фосфат. Превращение глюкозо--1-фосфата в глюкозо-6-фосфат идет также и без промежуточного образования глюкозы, в присутствии энзима фосфоглюкомутазы. В дальнейших стадиях, как и при брожении, глюкозофосфаты превращаются в пировиноградную кислоту, которая в животном организме восстанавливается до молочной кислоты. Во всех стадиях фосфорилирования и дефосфори-лирования переносчиком фосфора служит система АТФ-АДФ-А. [c.315]

    Образовавшиеся молекулы 3-ФГК затем подвергаются серии последовательных ферментативных превращений, ведущих к образованию молекулы глюкозы. Эти превращения включают реакции, известные в гликолитическом пути, но идущие теперь в обратном направлении (реакции, катализируемые ферментами Фг—Фб и Ф на рис. 82), и реакции, сформировавшиеся у гетеротрофов на пути синтеза глюкозы из Сг- и Сз-соединений для обхода необратимых реакций гликолитического пути (реакции, катализируемые ферментами Фе и Фа на рис. 82). Примечательно, что реакция восстановления 1,3-ФГК до 3-ФГА, катализируемая глицеральдегид-З-фосфат-дегидрогеназой, у пурпурных и зеленых бактерий зависит от НАД-Нг, а у цианобактерий и высших растений — от НАДФ-Нг. [c.252]

    Гексокиназа и глюкокиназа катализируют одну и ту же реакцию, фосфорилирование глюкозы и превращение ее в глюкозо-6-фосфат. Для печени (в которой запасается глюкоза) и Р-клеток поджелудочной железы (которая вырабатывает гормон инсулин, регулирующий концентрацию глюкозы в крови) характерен в основном изофермент глюкокиназа, а для остальных органов и тканей (например, мыщц и мозга) — гексокиназа. [c.43]

    Если UDPG непосредственно реагирует с фруктозо-6-фос-фатом по 8к2-пути, то в результате должен образоваться не сахарозофосфат, а ее эпимер — глюкозо фруктозо-6-фос-фат. Чтобы объяснить образование а-глюкозида, необходимо допустить возможность осуществления двухступенчатого процесса, при котором обе стадии протекают с обращением конфигурации. Полагают, что UDPG (а-глюкозид) переносит свою глюкозильную группу на фермент (реакция алкилирования) с образованием р-глюкозилфермента, который далее алкилирует фруктозо-6-фосфат, вновь давая а-глюкозильную группу. Можно видеть, что в этом процессе фермент действует не просто как матрица для организации близкого расположения реагентов, а играет в превращении активную химическую роль. [c.326]


    При длительном хранении сырья в нем начинают преобладать процессы распада. Особенно сложен обмен углеводов в клубнях картофеля. Синтез и гидролиз крахмала в них осуществляются не амилазами, а фосфорилазами (гликозилтрансферазами), обладающими способностью переносить гликозил (остаток моносахарида, не содержащего гликозидного кислорода) на фосфорную кислоту с образованием глюкозо-1-фосфата. Реакция фосфоролиза обратима. Взаимные превращения углеводов протекают при участии нуклеотидов, в частности аденозин- и уридинфосфатов, и многочисленных [c.44]

    Анаэробный процесс превращения глюкозы начинается с реакциа образования глюкозо-6-фосфата, катализируемой ферментом гексоки-назой (КФ 2.7.1.1.)  [c.51]

    В задаче предлагается проследить за превращением глюкозо-1-фосфата из скелетных и сердечной мышц крысы (кролика) в гликоген, измеряя количество неорганического фосфата, образующегося в процессе инкубации при участии фоофорилазы (обратная реакция). Добавление в реакционную смесь АМФ позволяет определить убыль тлю-козо-1-фосфата под влиянием обеих форм фосфорилазы. В пробах без АМФ ферментативное превращение глюкозо-1-фосфата будет осуществляться только фоофорилазой а. По разности между приростом неорганического фосфата, освобождающегося в ходе реакции в присутствии и отсутствие АМФ, рассчитывают убыль глюкозо-1-фосфата в результате действия фосфорилазы Ь. Следует учесть, что фосфорилаза а в реакционной среде без АМФ проявляет только 70% активности, определяемой в его присутствии. В связи с этим при расчете убыли глюко-зо-1-фоофата в пробе с АМФ под влиянием фосфорилазы Ь необходимо величину, полученную для фосфорилазы а в пробе без АМФ, пересчитать на 100%. [c.58]

    В мышечном экстракте, полученном, как описано ранее (с. 50), 1сследуют процент превращения глюкозо-1-фосфата в гликоген под влиянием фосфорилазы а и Ь (с. 58). В крови определяют содержа- [c.59]

    Фосфоглюкомутаза (КФ 2.7.5.1) катализирует обратимое превращение глюкозо-1-фосфата в глюкозо-6-фосфат. Равновесие реакции сильно сдвинуто в сторону образования глюкозо-6-фосфата и устанавливается, когда около 95% фосфогексоз находится в форме глюкозоб-фосфата. Фермент относительно термостабилен и не инактивируется при нагревании до 65°С. Б задаче предлагается проследить за превращением глюкозо-1-фосфата в глюкозо-6-фосфат, используя мышечный экстракт, в котором предварительной термообработкой инактивирована глюкозофосфатизомераза. [c.60]

    Глюкозофосфатизомераза (КФ 5 3.1.9) катализирует обратимое превращение глюкозо-6-фосфата и фруктозо-6-фосфата. Равновесие устанавливается при соотношении альдозы к кетозе приблизительно равном 2 1. Для проявления активности фермента не требуется присутствия ионов металлов или каких-либо кофакторов. Реакция изомеризации легко протекает в диализованных экстрактах мышц. Отсутствие АТФ в таких экстрактах делает невозможным дальнейшее превращение фруктозо-6-фосфата под влиянием фосфофруктокиназы. О процессе изомеризации судят по изменению содержания глюкозо-6-фосфата и фруктозо-6-фосфата в процессе инкубации. [c.61]

    Более сложные механизмы регуляции О.в. обусловлены прямыми и обратными управляющими связями. Суть их состоит в воздействии метаболитов на интенсивность биохим. процессов, в к-рых они сами образуются или испытывают превращения. В О.в. регуляция активности ферментов часто осуществляется посредством аллостерич. взаимод. ферментов с субстратами или промежут. продуктами (см. Ферменты). Классич. пример подобной регуляции с отрицат. обратной связью-подавление изолейцином собств. биосинтеза в результате его аллостерич. взаимод. с ферментом треониндегидратаза, катализирующим начальную р-цию пути биосинтеза изолейцина. Пример положит, прямой связи-стимуляция синтеза фосфоенолпирувата в гликолизе предшествующими метаболитами фруктозо-1,6-дифосфатом, глюкозо-6-фосфатом и глицеральдегид-З-фос-фатом. Управляющие связи такого рода позволяют стаби- [c.317]

    Биосинтез мио-И. заключается в превращении 6-фосфата D-глюкозы в 1Ь-лио-инозит-1-фосфат и последующем дефос-форилировании. Другае И. образуются из мио-И. путем эпи-меризации, часто через промежут. метиловые эфиры или кетопроизводные (инозозы). [c.362]

    После того как то или иное полимерное питательное вещество уже переварено (прогидролизовано) и образовавшиеся мономерные продукты проникли в клетку, обычно требуется пусковая реакция, протекающая с поглощением энергии. Например, гидролиз жиров (независимо от того, протекает ли он в просвете кишечника или внутриклеточ-но) приводит к образованию свободных жирных кислот. Прежде чем жирные кислоты примут участие в дальнейших метаболических превращениях, они присоединяются к специальному коферменту, коферментуА (СоА) с образованием СоА-производного жирной кислоты. Эта реакция требует расхода АТР, т. е. гидролиза АТР до АМР и РР (дополнение 3-А). Аналогичным образом глюкоза, попадая в клетки, превращается в эфир фосфорной кислоты — глюкозо-6-фосфат. Реакция образования глюкозо-6-фосфата также требует затраты АТР. Основные метаболические пути часто начинаются с одного из двух этих соедине- [c.81]

    В то время как превращение пирувата в ацетил-СоА и окисление последнего приводит к полному сгоранию глюкозы до двуокиси углерода и воды, существует другой вариант гликолитического пути, в случае которого брожение сахаров происходит в отсутствие кислорода. Например, молочнокислые бактерии могут восстанавливать пируват в лактат за счет NADH (на рис. 7-1 слева внизу). Заметим, что эта реакция восстановления в точности сбалансирована с предшествующей стадией окисления, т. е. со стадией окисления глицеральдегид-З-фосфата в 3-фосфоглицерат. При сбалансированной последовательности реакции окисления и последующей реакции восстановления превращение глюкозы в лактат, т. е. брожение, может протекать в отсутствие кислорода, т. е. без переноса электронов в дыхательной цепи. [c.85]

    Многие фосфорилазы ведут себя довольно загадочно. Например, мышечная гликогенфосфорилаза, катализирующая превращение гликогена (расщепление а-гликозидных связей) в а-О-глюкозо-1-фосфат, не обнаруживает ни способности катализировать парциальные реакции обмена, ни инверсии конфигурации, как этого можно было бы ожидать в случае реакции одноактного нуклеофильного замещения. Аналогичным образом при инкубировании фермента с глюкозо-1-фосфатом и арсенатом не происходит арсенолиза [18]. Возможно, это объясняется тем, что фермент не проявляет активности, пока не будут связаны оба субстрата. А это значит, что для функционирования активного центра фермента необходимо, чтобы между конформацией фермента и структурой двух субстратов установилось строгое соответствие, т. е. что активная конформация ферментного белка стабилизируется в присутствии субстратов. [c.100]

    Превращение глюкозы в лактат или в этанол и Oj сопровождается в итоге синтезом двух молекул АТР. Логичнее всего считать, что оии образуются иа стадии окисления глицеральдегид-З-фосфата. Образование же АТР из РЕР и ADP на стадии 10 (рис. 9-7) можно рассматривать как воспроизводство АТР, истраченного на затравочные реакции Отметим, что выход АТР при превращении в пируват глюкозиых остатков гликогена составляет три молекулы. Однако на включение в состав гликогена каждого остатка глюкозы ранее потребовалось затратить две молекулы АТР (уравнение П-24). Следовательно, суммарный выход сбраживания запасенного ранее полисахарида составляет всего одиу молекулу АТР на молекулу гексозы. [c.339]

    Система структурной перестройки сахаров совместно с гликолитн-ческими ферментами (превращающими глюкозо-6-фосфат в глицеральдегид-З-фосфат) может осуществлять превращение гексозофосфатов в пентозофосфаты (рис. 9-8,5) [34]. Полный процесс описывается уравнением [c.343]

    С количественной точки зрения значительно более важным путем, обеспечивающим фиксацию СО2, является восстановительный пентозофосфатный путь, известный под названием цикла Кальвина (дополнение 11-А). Эта последовательность реакций имеет место в хлоропластах зеленых растений, а также в хемоавтотрофных бактериях. Цикл Кальвина представляет собой по существу путь обращения окислительного пентозофосфатного цикла (рис. 9-8), в процессе которого происходит полное окисление глюкозы при помощи МАОР+ (с использованием одной молекулы АТР, необходимой для превращения исходной молекулы глюкозы в глюкозо-6-фосфат)  [c.475]


Смотреть страницы где упоминается термин Глюкозо фосфат, превращение: [c.42]    [c.459]    [c.201]    [c.68]    [c.319]    [c.457]    [c.205]    [c.60]    [c.186]    [c.85]    [c.493]   
Биохимия растений (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Глюкоза фосфат

Глюкозо фосфат



© 2025 chem21.info Реклама на сайте