Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смачивание сплавов

    При смачивании сплавов Т1С — 2гС и Т1С — УС жидким никелем помимо краевого угла определяли удельное электрическое сопротивление Результаты измерений следующие  [c.267]

    Наименьший краевой угол реализуется при смачивании сплавом с содержанием 77% калия, соответствующим эвтектическому составу. [c.276]

    Смачивание расплавом наплавляемой поверхности непосредственно после флюса и интенсивное удаление продуктов флюсования обеспечивает надежное прилегание наплавляемого металла к основному. Литейные, дефекты наплавляемого слоя устраняют подпиткой кристаллизующегося сплава из перегретого на 20 -40 °С питателя в пуансоне давлением сжатого газа. Для питания кристаллизующегося сплава в течение всего времени кристаллизации охлаждение ведут последовательно в направлении, обратном подаче подпитки. В качестве наплавляемого материала можно использовать, например, баббит Б83 и Б16 и заготовки из малоуглеродистой стали. [c.230]


    В случае применения ЛБТ из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их со стальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии. При нагружении таких соединений переменными нагрузками возникают процессы фреттинг-коррозии. При проведении спуско-подъемных работ наблюдается периодическое смачивание при чередовании атмосферной коррозии и коррозии погружением в электролит, что стимулирует увеличение скорости коррозионного разрушения. [c.107]

    Замачивание зерна ведут в такой последовательности. Замочный чан наполняют водой на /г— /з объема, при продолжающемся поступлении воды в него равномерно и непрерывно засыпают очищенное, отсортированное и взвешенное зерно. Для лучшего смачивания зерна, отделения пыли и сплава (шелухи, мякины, пустых и щуплых зерен) водно-зерновую смесь одновременно перемешивают воздухом через барботеры. Набор воды прекращают, когда оно покроет зерно слоем 10—15 см и 15 см до кромки чана останутся свободными. [c.126]

    Для характеристики взаимодействия между графитом и жидкими металлами и сплавами приводятся данные о краевых углах смачивания 0, работе адгезии поверхностная энергия Ож [c.11]

    Согласно Вагнеру [28—29], рост нитевидных кристаллов по механизму (пар — жидкость — твердое) возможен лишь при определенных значениях смачиваемости твердой фазы насыщенным ею расплавом. Следует отметить, что сама возможность ненулевых углов смачивания твердой фазы жидким сплавом равновесного состава лишь постулировалась в [28—29]. [c.3]

Рис. 1. Влияние высоты микронеровностей поверхности стекла ТСМ-700 (а) ТРЛ-10 (б) кварцевого стекла (в) на смачивание свинцом (У) и свинцово-титановым сплавом (2) при 580° С в вакууме 10 мм рт. ст. Рис. 1. <a href="/info/39473">Влияние высоты</a> микронеровностей <a href="/info/165051">поверхности стекла</a> ТСМ-700 (а) ТРЛ-10 (б) <a href="/info/4769">кварцевого стекла</a> (в) на смачивание свинцом (У) и свинцово-<a href="/info/85863">титановым сплавом</a> (2) при 580° С в вакууме 10 мм рт. ст.
    Для определения влияния других элементов, образующих трех-и четырехкомпонентные системы, было исследовано смачивание твердых молибдена и ниобия сплавами на основе алюминия с различным содержанием кремния, титана и хрома. Двойным дуговым переплавом было получено десять сплавов, данные химического анализа которых показали наличие 0—12,30% титана, 0,42— 9,46% кремния и 2,28—9,88% хрома. Температуры, при которых краевые углы смачивания расплавами молибдена и ниобия равны 45 , 15° и 0°, приведены в таблице. [c.57]


    Сравнивая температуры полного растекания для разных расплавов, можно сделать следующие выводы увеличение суммарного содержания легирующих компонентов улучшает смачивание как молибдена, так и ниобия. Сплавы № 7 и 8, полностью растекающиеся на молибдене при 1020° С, содержат суммарное количество кремния, титана и хрома немногим более 23%. Наилучшее смачивание [c.57]

    Работа адгезии расплава к металлизированной керамике довольно существенна и составляет величину 2040 2140 2165 2200 и 2410 соответственно для ПМГ-12, № 446, № 442, № 432, № 439 при температуре плавления. При выдержке припоя в контакте с пластинкой в течение 5 сек увеличение адгезии при возрастании температуры над точкой плавления до 50° С составляет примерно 10— 20 мдж/м , а при увеличении времени выдержки до 25 сек работа адгезии повышается, однако разница между адгезией при температуре плавления и перегревом в 50° С остается практически такой же. Следовательно, время выдержки и температура перегрева сплава над точкой плавления не оказывают существенного влияния на увеличение работы адгезии, в то время как краевой угол смачивания изменяется весьма существенно, т. е. для данного покрытия Мо — Мп наиболее целесообразными будут те технологические условия, когда припой достаточно жидкотекуч, высока адгезия и 0 удобен для пайки. Вышесказанное можно охарактеризовать параметрами 0 = 15 20°, Т + 20° С. Время выдержки [c.67]

    Установлено, что введение в медь, олово, серебро и их сплавы малых добавок Т1, 2г, Сг способствует резкому увеличению смачивания и повышению адгезии расплава к поверхности алмаза [9]. [c.105]

    Методом раздельного нагрева жидкой и твердой фаз исследовано смачивание жидким алюминием молибдена и ниобия от температуры, а также влияние 81, Т1 и Сг, введенных в алюминий на контактные свойства исследованных систем. Определены составы сплавов и рекомендуемые рабочие температуры для нанесения защитных покрытий. Табл. 1, библиогр. 4. [c.223]

    Кинетику разрушения сплавов изучали в тесной связи с воздействием метеорологических факторов, для чего проводили систематическую регистрацию количества атмосферных осадков, относительной влажности и температуры воздуха, продолжительности смачивания поверхности металла, скорости и направления движения воздушных масс и длительности солнечного сияния. [c.60]

    Переменное смачивание оказывает существенное влияние на процесс коррозии сплавов, в том числе меди и латуни. Сплавы на медной основе показали лучшую коррозионную стойкость в атмосфере, чем в морской воде. Во влажном субтропическом климате следует избегать контактов титановых сплавов с углеродистыми сталями и алюминием, так как последние разрушаются. Контакт титановых сплавов с нержавеющими сталями не представляет опасности ввиду малой разности их электродных потенциалов и сильной поляризуемости титановых сплавов. Титановые сплавы более коррозионностойкие, чем нержавеющие. [c.102]

    Следует учитывать, что нет единого метода испытания для всех сплавов, так как процесс коррозии различных металлов в данной коррозионной среде при определенном методе испытания, протекает с различной скоростью. Так, например, железо и его сплавы, а также сплавы алюминия с медью весьма чувствительны к периодическому смачиванию электролитами. Коррозия же кадмия и чистого алюминия при этом виде испытания ускоряется в меньшей степени. [c.18]

    В зоне прилива характерно смачивание поверхности металла хорошо аэрированной морской водой в момент прилива. Температура металла зависит от температуры воздуха и воды, но температура воды является определяющей. Поверхность металла покрывается водорослями, которые могут производить частичную защиту конструкционных сталей и вызывать локальную коррозию нержавеющих сталей, алюминиевых сплавов. [c.29]

    П. а. называют также определение пробы ювелирных изделий (т. е. количеств, содержания Au, Ag или Pt, выраженного обычно числом массов гх частей благородного металла в 1000 мае. ч. сплава, из к-рого сделано изделие), к-рое проводят, как правило, без нарушения их целостности Для этого сравнивают линии, прочерченные изделием на пробирном камне (кремнистый сланец черного или коричневого цвета), с линиями, прочерченными эталонами-т. наз. пробирными иглами известного состава, иногда после смачивания линий спец. р-рами. [c.96]

    В табл. 34 приведены свойства (электрические, магнитные, физико-механические, теплофизические) покрытий N —8. Пайка химически восстановленного покрытия N1—В не вызывает затруднений. По краевому углу смачивания припоем это покрытие немного уступает меди и несколько превосходит сплав N1—Р. [c.62]

    Такие особые свойства поверхности делают очевидным предположение о том, что можно в значительной степени управлять свойствами материалов, обрабатывая тем или иным образом их поверхность. Открытый академиком П. А. Ребиндером эффект уменьшения прочности материалов под влиянием поверхностно активных веществ ПАВ, который подробнее обсуждается ниже, является тому наглядным примером. П. А. Ребиндер также обнаружил эффект снижения твердости тел при смачивании их родственными расплавами, что используется при обработке высокопрочных закаленных сталей и сплавов. Благодаря этому удалось повысить скорость сверления в 200 раз, а срок службы сверл — в 300 раз. [c.51]


    Исследованиями, выполненными в институте Гипроморнефть, показана принципиалвная возможность применения для этих целей высокопрочных и коррозионно-стойких алюминиевых сплавов. Скорость корразии алюминиевых сплавов относительно невелика в подводной зоне и донном грунте и еще меньше в зоне периодического смачивания и в морской атмосфере. Это различие связано с тем, что в зоне периодического смачивания, несмотря на более высокую температуру электролита, существует возможность обильного доступа кислорода воздуха к поверхности сплава. Поэтому образующаяся окисная пленка настолько прочна и монолитна, что поддерживает сплав алюминия в пассивном состоянии. [c.204]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    Цель настоящей работы — определение влияния чистоты механической обработки поверхности стекла подлежащей пайке на капиллярные свойства припойных расплавов и прочностные свойства стекло-металлических спаев, полученных с применением свинцово-титановых припоев. Изучали смачивание свинцом и свинцовотитановым сплавом подложек из стекла с различной чистотой механической обработки. [c.48]

    Прочностные испытания припоев и спаев проводили на срез и разрыв. Пайку образцов выполняли по режиму, соответствующему экспериментам по определению смачивания. При отсутствии титана в припое к шлифованным образцам свинец вообще не адгезировал. Это, очевидно, связано с тем, что при 0> 90° расплав не затекает на всю глубину микроканавок, а покоится лишь на вершинах микровыступов. Термические напряжения, возникающие при охлаждении, приводят к нарушению такого несплошного контакта. На полированной поверхности стекла капля свинца в большинстве случаев удерживается достаточно прочно. Предел прочности на срез составляет десятые доли кгсЫм , но воспроизводимость результатов колеблется от нуля до прочности свинца. В случае использования титансодержащих сплавов независимо от марки стекла и чистоты обработки его поверхности разрушение при срезе при 20° С происходит только по припою и составляет 1,3 0,3 кгс/мм . Диаметр капли при испытаниях на срез составлял 5—6 мм, методика испытаний аналогична работе [3]. [c.49]

    Несколько больший краевой угол смачивания и меньшая адгезия наблюдаются в случае смачиваемости исследуемыми припоями керамики 22ХС с Мо-металлизацией. Вероятно, в результате меньшей растворимости сплава Си—Ое в чистом молибдене фиксируется и больший краевой угол. Так, при температуре плавления он составляет 30, 32, 30, 25, 25° соответственно для ПМГ-12, № 446, № 442, № 432, № 439, а адгезия равна 1995, 2090, 2140, 2170, 2372 мдж1м , при увеличении температуры на 50° С краевой угол составляет 26, 26, 27, 21 и 18°, а адгезия 2020, 2130, 2150, 2195, [c.67]

    Возможность растекания жидких металлов и сплавов по твердым теллм под действием различных сил в основном определяется термодинамикой тонких пленок. В работе [8] сформулированы термодинамические условия смачивания твердых тел и образования смачивающих пленок конечной толщины, находящихся в равновесни с объемной фазой. [c.134]

    Изучение смачивания графитов В-1, МГ, ПРОГ-2400 жидким сплавом на основе циркония. Ю. Г. Горячковский, Е. Ф. Филимонов, Физическая химия конденсированных фаз, сверхтвердых материалов и их границ раздела. Наукова думка , К-, 1975, с. 137—139. [c.229]

    В атмосферном павильоне с жалюзими испытывали сплавы системы Л1-М2-Си А1-Мд Zп-Al-Mg, а также цинк (99,8%), электролитическую медь (99,9%), алюминий (99,5%) и электролитические и химические покрытия. Результаты испытаний металлов представлены в табл. V. 6. Для сравнения приведены данные о коррозии этих же металлов на воздухе в Батуми. В течение первых 3 месяцев с начала эксперимента метеорологические условия были следующими средняя месячная температура воздуха колебалась от -1-21,1 до +24,2 °С, относительная влажность — от 78 до 80%, количество осадков — от 81,1 до 335,5 мм, продолжительность смачивания — от 115 до 192 ч. Как видно из данных, скорость коррозии стали в открытой субтропической атмосфере намного выше, чем в павильоне ( в 20 раз). То же характерно и для цинка и меди. С алюминием происходит следующее вначале испытаний скорость коррозии алюминия в открытой атмосфере несколько меньше, чем в павильоне жалюзийном со временем она увеличивается и далее вновь падает. В конечном счете скорость коррозий алюминия в павильоне больше, чем в открытой атмосфере. Таким образом, в сильно агрессивных атмосферах коррозия металлов и сплавов на воздухе выше, чем в павильоне жалюзийном. Отсюда следует, что в тропических и субтропических районах изделия и оборудование следует хранить под навесом, брезентами или в складах. [c.77]

    На рис, 2,2 приведены экспериментальные данные, характеризующие влияние периодического смачивания 0,5 н, раствором Na l на скорость коррозии некоторых металлов [7], Из приведенных данных видно, что больше всего скорость коррозии в этих условиях возрастает у стали, чугуна и цинка для дуралюмина также наблюдается некоторое увеличение скорости коррозии. Применение периодического смачивания по режиму 10 мин в электролите и 50 мин на воздухе для алюминиевых и магниевых сплавов является стандартным испытанием. [c.27]

    Действие периодического смачивания на металлы зависит от частоты смачивания и вида металла. По экспериментальным данным, при смачивании углеродистой стали 0,5 и. раствором Na l с частотой 12 раз/ч скорость коррозии возрастает в 40 раз по сравнению со скоростью коррозии, наблюдавшейся при погружении образца стали в этот электролит. Для алюминия и сплава Д16Т действие периодического смачивания много слабее, что связано со способностью этих металлов к пассивации при увеличении подвода кислорода. [c.36]

    МПа превышает предел выносливости) вследствие больших потерь на внутреннее трение образцы разогреваются и теряют устойчивость. Жидкая коррозионная среда при уровнях напряжений выше предела выносливости охлаждает образец и увеличивает его долговечность. Периодическое смачивание 3 %-ным раствором Na I нагретой до 230—250°С стали при низких амплитудах циклических нагрузок также резко снижает ее сопротивление усталостному разрушению. Условный предел выносливости снижается с 185 до 145 МПа. При уровнях циклических напряжений выше предела выносливости электрохимическое воздействие коррозионной среды не успевает существенно проявиться ввиду сравнительно небольшого времени до разрушения, в то время как из-за охлаждающего эффекта ограниченная долговечность стали увеличивается. Аналогичные результаты получены и другими авторами. Следует отметить, что такое заключение не является универсальным длн разных металлов. Оно справедливо для тех металлов и сплавов, для которых повышение температуры образца (от комнатной и выше), например, в результате циклического деформирования/сопровождается монотонным снижением сопротивления усталости. К таким материалам относятся, в частности, хромоникелевые стали. [c.63]

    Совр. Ф.-х. м. развивается на основе представлений об определяющей роли физико-хим. явлений на границе раздела фаз - смачивания, адсорбции, адгезии и др.- во всех процессах, обусловленных взаимод. между частицами дисперсной фазы, в т. ч. структурообразования (см. Структурообразова-ние в дисперсных системах). Коагуляционные структуры, в к-рых взаимод. частиц ограничивается их соприкосновением через прослойку дисперсионной среды, определяют вязкость, пластичность, тиксотропное поведение жидких дисперсных систем, а также зависимость сопротивления сдвигу от скорости течения. Структуры с фазовыми контактами образуются в кристаллич. и аморфных твердых телах и дисперсных материалах при спекании, прессовании, изотермич. перегонке, а также при вьщелении новой высокодисперсной фазы в пересыщенных р-рах и расплавах, напр, в минер, связующих или полимерных материалах. Мех. характеристики таких тел - прочность, долговечность, износостойкость, упру-го-пластич. св-ва и упруго-хрупкое разрушение - обусловлены силами сцепления в контактах, числом контактов (на 1 см пов-сти раздела фаз), типом контактов, дисперсностью системы и могут изменяться в широких пределах. Так, для глобулярной пористой монодисперсной структуры прочность материала может варьировать от 10 до 10 Н/м . Возможно образование иерархич. уровней дисперсной структуры первичные частицы - их агрегаты - флокулы - структурированный осадок. Сплошные материалы, в частности металлы и сплавы, в рамках представлений Ф.-х. м. рассматриваются как предельный случай полного срастания зерен структуры с ( овыми контактами. [c.90]

    Железо входит в состав гемоглобина крови, а точнее в красные пигменты крови, обратимо связывающие молекулярный кислород. У взрослого человека в крови содержится около 2,6 г железа. В процессе жизнедеятельности в организме происходит постоянный распад и синтез гемоглобина. Для восстановления железа, потерянного с распадом гемоглобина, человеку необходимо суточное поступление в организм около 25 мг. Недостаток железа в организме приводит к заболеванию — анемии. Однако избыток железа в организме тоже вреден. С ним связан сидероз глаз и легких — заболевание, вызываемое отложением соединений железа в тканях этих орга-нов Недостаток в организме меди вызывает деструкцию кровеносных сосудов. Кроме того, считают, что его дефицит служит причиной раковых заболеваний. В некоторых случаях поражение раком легких у людей пожилого возраста врачи связывают с возрастным снижением меди в организме. Однако избыток меди приводит к нарушению психики и параличу некоторых органов (болезнь Вильсона). Для человека вред причиняют лишь большие количества соединений меди. В малых дозах они используются в медицине как вяжущее и бактерио-стазное (задерживающее рост и размножение бактерий) средство. Так, например, сульфат меди (И) Си304 используют при лечении конъюнктивитов в виде глазных капель (0,25 %-ный раствор), а также для прижиганий при трахоме в виде глазных карандашей (сплав сульфата меди (И), нитрата калия, квасцов и камфоры). При ожогах кожи фосфором производят ее обильное смачивание 5 %-ньш раствором сульфата меди(П). [c.170]


Смотреть страницы где упоминается термин Смачивание сплавов: [c.130]    [c.179]    [c.302]    [c.49]    [c.57]    [c.58]    [c.58]    [c.86]    [c.138]    [c.92]    [c.94]    [c.100]    [c.18]    [c.163]    [c.46]   
Адгезия жидкости и смачивания (1974) -- [ c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Смачивание



© 2025 chem21.info Реклама на сайте