Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влага осмотическая

    Указано, что в гравитационном поле из осадка может быть удалена лишь избыточная влага при обезвоживании под вакуумом из осадка удаляется также осмотическая влага и влага, находящаяся в макропорах при обезвоживании в центрифугах в осадке остается только влага, находящаяся в микропорах, и адсорбированная влага все виды влаги могут быть удалены термической сушкой. [c.268]

    В медицине обычно используют изотонические растворы. Иногда применяют гипертонические, т. е. имеющие большее по сравнению с кровью осмотическое давление. Например, при глаукоме (характеризующейся повышением внутриглазного давления) гипертонический раствор, введенный в вену, оттягивает избыток влаги из передней камеры глаза. [c.146]


    Адсорбционно связанная влага. Влажность обусловлена адсорбцией воды на наружной поверхности материала и на поверхности его пор. Осмотически связанная влага находится внутри структур-ного скелета материала и удерживается осмотическими силами. [c.406]

    Снижение содержания активных функциональных групп после высушивания торфа приводит, вследствие развития меж-и внутримолекулярных взаимодействий, к тому, что процесс связывания молекул воды с материалом становится избирательным и определяется тем, насколько выгодна связь сорбента е сорбатом по сравнению со связями в самом материале. Особенно существенно сказывается глубокое высушивание торфа на содержании таких форм влаги, как капиллярная, внутриклеточная, осмотическая, иммобилизованная, т. е. влаги, за содержание которой ответственна в основном структура материала . В то же время общее количество физико-химически связанной влаги в торфе при его высушивании в мягких условиях может изменяться незначительно. При этом теплота смачивания дегидратированного торфа в 3—4 раза превышает теплоту кон- [c.66]

    Принята [194] следующая классификация избыточная влага осмотическая влага влага, находящаяся в макропорах (диаметр более 0,1 мкм) влага с иммобилизованной структурой влага, находящаяся в микропорах (диаметр менее 0,1 мкм) влага, адсорбированная в виде полимолекулярной пленки влага, адсорбированная в виде мономолекулярной пленки. [c.267]

    Конечное содержание влаги в покрытии является функцией активности воды во внешней среде. Адсорбция влаги покрытием прекращается, когда осмотическое давление в покрытии становится равным осмотическому давлению раствора. Набухание пленки вызывает увеличение ее объема, что может привести к возникновению высоких внутренних напряжений, которые в случае превышения сил адгезии приводят к отслаиванию покрытия. [c.22]

    В / период сушки влага внутри материала перемещается в виде жидкости (капиллярная и осмотически связанная влага). С началом // периода начинается неравномерная усадка материала. На стадии равномерно падающей скорости наблюдаются местные углубления поверхности испарения и начинается испарение внутри материала. При этом капиллярная влага и некоторая часть адсорбционно связанной влаги перемещаются внутри материала уже в виде пара. [c.611]

    Разрабатываются способы интенсификации добычи нефти путем использования электроосмоса в процессе вытеснения нефти водой из коллекторов. Перспективность этого направления, как и использования электроосмоса при фильтрации, связана с тем, что с увеличением дисперсности системы увеличивается ее гидравлическое сопротивление и фильтрация становится все менее эффективной. Эффективность же электроосмоса возрастает по мере развития диффузных слоев с увеличением Sq. Эти исследования, сопряженные с разработкой теории совместного электроосмоса двух жидкостей (нефти и воды), развиваются в работах Тихомоловой (ЛГУ) . Успешными оказываются и попытки использовать электроосмос для осушки стен сырых зданий. Путем закладки гальванических элементов в стену здания создается постоянный электро-осмотический поток, направленный навстречу восходящему потоку влаги, обусловленному капиллярным поднятием. [c.212]


    Осмотические явления играют большую роль в биологических процессах. Устойчивая величина осмотического давления в организме растений и животных лежит в основе важных физиологических функций процесса всасывания , выделения влаги, утоления жажды и других регулировочных явлений. [c.179]

    Иногда учитывают и так называемую осмотическую влагу, обусловливаемую избирательной диффузией влаги через угольное вещество, имеющее коллоидное строение и адсорбционную способность отдельных компонентов ископаемых углей. [c.214]

    В растениях наблюдается значительное осмотическое давление, достигающее 0,5...2,0 МПа. Некоторые растения пустынь и засоленных почв, которым приходится особенно упорно бороться за влагу, имеют осмотическое давление, достигающее 5 МПа и даже 17 МПа. [c.181]

    Согласно современным представлениям, механизм защитного действия неметаллических покрытий связан как с изолирующим действием, так и с влиянием на электрохимические процессы, протекающие под неметаллической пленкой. Экранирующее действие неметаллических покрытий обусловлено их способностью замедлять диффузию и перенос через покрытие компонентов коррозионно-активной среды к поверхности металла и определяется в значительной степени пористостью покрытий. Проникновение электролита через поры покрытия или через межмолекулярные несовершенства пленкообразующего вещества (в процессе теплового движения) происходит под действием капиллярных сил. Осмотическое давление, возникающее вследствие перепада концентрации электролита на поверхности капиллярной пленки, контактирующей с внешней средой, прилегающей к защищаемому металлу, способствует диффузии среды через покрытие. При осмотическом перемещении влаги через пленку давление может быть больше, чем сила адгезии пленки к металлу, в результате чего происходит локальный отрыв пленки от поверхности металла, что приводит к образованию вздутий и пузырей, являющихся первоначальным очагом коррозионного поражения металлической основы. [c.128]

    С целью детального изучения механизма сорбции и структуры сорбированной воды были привлечены методы ядерного магнитного резонанса (ЯМР) и диэлектрический. Методом спин-эхо было показано, что зависимость спин-спиновой релаксации T a от влагосодержания подобна изотерме сорбции (десорбции) и имеет точки перегиба, соответствующие границам физико-химической, осмотической и капиллярной влаги в торфе. Значения спин-решеточной релаксации на один-два порядка больше значения Т . Значения возрастают с увеличением влажности торфа, но они значительно меньше, чем Ту для чистой воды из-за наличия парамагнитных примесей, протонного обмена между молекулами воды и функциональными группами и наличия растворенных веществ в жидкой фазе торфа [22, 23]. [c.71]

    Глюкозно-фруктозный сироп, по мнению многих исследователей, может частично или полностью заменить сахар в различных отраслях пищевой промышленности. Он обладает низкой вязкостью, высокой гигроскопичностью, обусловленной присутствием фруктозы, что способствует сохранению влаги и предотвращению высыхания в таких продуктах, как глазурь и помада высоким осмотическим давлением, повышающим бактериальную стабильность лег- [c.145]

    Физ.-хим. связь объединяет адсорбционную и осмотическую влагу (напр., в коллоидных и полимерных материалах). Адсорбционно связанная влага прочно удерживается силами межмол. взаимод. на пов-сти пор материала в виде монослоя или неск. слоев (см. Адсорбция). Осмотически связанная влага находится внутри и между клеток материала и менее прочно удерживается осмотич. силами (см. Осмос). Влага эти видов связи с трудом удаляется при С. [c.481]

    Механическими методами обезвоживания осадков, а также естественной их сушкой на иловых площадках из осадков удаляется значительная часть избыточной и осмотической воды. Вода микро- и макро-пор удаляется выпариванием или под действием давления. Метод тепловой сушки, наиболее надежный для изучения форм связи влаги с частицами твердой фазы, заключается в выявлении форм связи влаги путем снятия кривых кинетики изотермической сушки осадков. Кинетика сушки осадков изучается с помощью лабораторного влагомера по методике, изложенной в специальной литературе. [c.249]

    По природе связей с высушиваемым материалом выделяют следующие виды влаги в порядке следования прочности связей поверхностную капиллярную, связанную капиллярными силами и силами смачивания осмотическую (внутриклеточную, или влагу набухания) абсорбционно-химическую. [c.166]

    Физико-химическую связь имеет адсорбционно связанная, осмотически удерживаемая и структурная влага. [c.670]


    Осмотически удерживаемая влага удаляется из материала в начале сушки вместе с механически удерживаемой влагой. [c.670]

    Торф в естественном состоянии характеризуется большим содержанием влаги. Различают химически и физико-химически связанную воду в торфе, а также воду энтропийной связи и механического удерживания. Первые два вида включают воду, связанную с активными функциональными группами гуминовых веществ, углеводного комплекса и лигнина. Особенность различия здесь заключается в том, что связь имеет объемный, а не поверхностный характер. Энтропийная вода удерживается в торфе осмотическими силами внутри агрегатов торфа, перегородки между которыми являются проницаемыми для молекул воды и не проницаемыми для ионов. Вода механического удерживания включает капиллярную, внутриклеточную и структурно-захваченную. [c.42]

Рис. 57. Осмотический механизм проникновения влаги под пленку полимерного покрытия Рис. 57. Осмотический <a href="/info/863003">механизм проникновения</a> влаги под <a href="/info/84126">пленку полимерного</a> покрытия
    Таким образом, сорбированная влага отличается по структуре от чистой воды. Вследствие хаотического распределения активных центров внутри ассоциатов торфа структура воды вблизи активных центров в микропорах существенно отличается от структуры воды в объеме. В осмотической влаге находятся растворенные вещества и газы, которые также искажают структуру воды. [c.216]

    Ii другие отличные свойства. Капиллярная влага связана с материалом капиллярными силами и смачиванием и, кроме адсорбированного мономолекулярного слоя, обладает теми же свойствами, что и свободная влага. Осмотическая связь влаги проявляется в растворах твердых веш,еств в виде понижения давления паров над поверхностью растворов по сравнению с их давлением над поверхностью воды при t = onst. [c.665]

    Высушенные до влажности около 8% дрожжевые клетки находятся в состоянии анафюза. Для сушки наиболее пригодны дрожжи плотной консистенции с содержанием внеклеточной влаги 12—17% при общей влажности 70—71%. Вода в дрожжевой клетке находится в форме адсорбционно и осмотически связанной. Адсорбционно связанная влага прочно удерживается коллоидами клетки и трудно испаряется. Потеря ее в большинстве случаев сопровождается гибелью клетки, поэтому дрожжи высушивают до влажности не. менее 8%. Осмотически связанная влага (влага набухания), так же как и внеклеточная, удаляется без нарушения структуры клетки. [c.365]

    Наряду с наиболее прочно связанной водой в торфе, как отмечалось выше, существует и ряд других категорий влаги, находящейся в более подвижном состоянии. Прежде всего, это вода полимолекулярной сорбции, которая по теплоте испарения мало отличается от свободной. Заполнение полимолекулярных слоев происходит после завершения формирования мономолекулярно-го слоя воды в результате последующей сорбции молекул воды на вторичных центрах [219] с формированием двух- и трехмерных пленок на поверхности структурных единиц материала. В торфе кроме физико-химически связанной влаги (воды моно-и полисорбции) различают также энтропийно связанную воду (осмотическую), воду механического удерживания и химически связанную [220]. [c.68]

    Клеточный сок растений характеризз ется осмотическим давление.м от 5 до 10 атм. Солончаковые почвы развивают ос.мотическое давление 12,5 атм, а чернозем — всего лишь 2,5 атм. Плазматическая мембрана клеток играет роль полупроницаемой мембраны. Поскольку солончаковая почва содержит более концентрированные растворы солей (имеет большое осмотическое давление), то вода покидает клетки растения. В результате цитоплазма клетки отслаивается, а растение погибает. На черноземе картина иная — вода из почвы поступает в клетку и разбавляет теперь уже более концентрированный раствор в клетке. Растение хорошо впитывает влагу и развивается. Однако, если испарение и расход влаги недостаточны (длительное время стоит сырая и холодная погода), то при избытке влаги клетка растения может лопнуть. [c.227]

    Осмотические явления играют большую роль в биологических процессах. Устойчивая величина осмотического давления в организме растений и животных лежит в основе важных фи-аиолопических функций процесса всасывания, выделения влаги, утоления жажды и других регулирующих явлений. Осмотическое давление почвенного раствора существенно влияет на про- [c.86]

    Известно, что вода может находиться в химической, физико-химической и физико-механической связи с твердыми частицами, а также существовать в форме свободной воды. Химически связанная вода входит в состав вещества и не выделяется даже при термической сушке осадков. Физико-химической связью удерживается адсорбционная и осмотическая вода, а физико-механичтекой — капиллярная вода, вода смачивания и структурная влага, [c.279]

    В последнее время в Советском Союзе и за рубежом разрабатываются методы подготовки поверхности с помощью веществ, превращающих ржа вчину в фосфат железа. Такая об работка с успехом может использоваться в тех случаях, когда отложения продуктов коррозии не превышают 0,1 мм, защищаемая конструкция работает в мягких (с точки зрения коррозии) условиях и восстановление покрытий не связано с трудностями. Основными недостатками метода являются невозможность осуществления контроля полноты преобразования ржавчины, отсутствие гарантии равномерности и прочности образованного фосфатного слоя, а также опасность возникновения концентрационных потенциалов (при наличии остатков непрореагировавшей фосфорной кислоты), обусловливающих осмотическое проникание влаги к поверхностй металла. Очевидно, применение такого метода подготовки по-ве рхности при устройстве антикоррозионных покрытий на трубах в случаях подземной прокладки исключается. Вместо этого применяют фосфатирование, сунщость которого заключается в образовании прочно связанного С поверхностью предварительно очищенного металла пористого слоя трудно растворимых фосфатов железа, марганца и цинка. Такой фосфатный слой обладает развитой поверхностью, что обеспечивает прочное сцепление с лакоК1расочной пленкой. [c.97]

    Модифицирование новерхности глинистой фазы известью является следствием ионообменных, адсорбционных и хемосорбционных процессов. В главе II уже указывалось, что замещения натрия в обменном комплексе на кальций резко меняют природу глины. В условиях дефицита влаги кальцийзамещенные глины, обладая значительной энергией связи, имеют более мощную оболочку из жестко ориентированных диполей воды [47], но при избыточном оводнении гидратные слои натриевых глин в 6—7 раз толще [18]. Механические эффекты, обусловливающие набухание и размокание, связаны с осмотическим развитием адсорбционных слоев, поэтому кальцинирование существенно подавляет пептизацию глинистого материала. Переход от глин натриевого типа к кальциевому происходит практически скачком. Ряд исследователей показал, что для этого перехода достаточно заместить кальцием всего 30—40% обменной емкости [73]. [c.335]

    Формы связи воды с твердыми частицами влияют на выбор процессов, используемых для обработки осадков. В соответствии с классификацией влага в осадках по степени увеличения энергии связи с твердыми частицами суспензий подразделяется на избыточную, осмотическую, макро- и микропор При обезвоживании и сушке осадков на ка кдый вид влаги затрачивается определенная удельная энергия. Химически связанная вода входит в состав вещества и не отделяется даже при термической сушке осадков. [c.249]

    Процесс посола основан на диффузии и осмосе, при котором в толщу мяса проникают посолочные ингредиенты, а из мяса извлекается часть влаги, экстрактивных веществ, белков и др. Использование при посоле метода шприцевания рассола, а также интенсивных способов обработки посоленного сырья (тумблирование, массирование, вибрацию и т.п.) позволило ускорить процессы проникновения и последующего распределения посолочных ингредиентов в продукте за счет фильтрации рассола. Исходя из этого положения, процесс посола мяса при производстве соленых изделий рассматривают как фильтрационно-диффузионный осмотический. [c.1116]

    Некоторые свойства влажных материалов. Удаление влаги из материала при его конвективной сушке можно представить как сочетание двух последовательных процессов 1) диффузии влаги изнутри частицы материала на ее поверхность и 2) диффузии влаги с поверхности частицы в поток сушильного агента (воздуха, других газов). На характер и скорость протекания этих процессов, помимо метода и режима сушки, оказывают большое влияние механические и физико-химические свойства высушиваемых материалов, предопределяющие форму связи влаги с ними. Форма этой связи определяется затратой энергии на отрыв 1 моль влаги от абсолютно сухого вещества при определенном его влагосодер-жании. По величине затрачиваемой энергии различают четыре формы связи влаги с твердыми веществами химическую, адсорбционную, капиллярную и осмотическую. [c.664]

    Но как только под пленку проникает влага, она образует концентрированный в микрообъеме раствор различных солей, встреченных под пленкой. В результате по одну (наружную) сторону полупроницаемой органической пленки имеется раствор с малой концентрацией ионов, по другую (внутреннюю) — с большой концентрацией, т. е. созданы условия для осмоса (рис. 57). С этого момента начинается ускоренное осмотическое перемещение влаги под пленку. Скорость перемещения прямо пропорциональна разности концентраций. Обозначим 1 1 и Р концентрацию раствора и давление под пленкой полимера, а 2 и 2 — концентрацию раствора и давление в наружной йленке влаги. Если 51>Р2, то Р >Р2- Под пленкой возникает значительное давление, приводящее к отслаиванию и вспучиванию. [c.163]

    Живица представляет собой вязкую и липкую жидкость, перемещение которой по каналам смоляных ходов сопряжено с большими силовыми затратами. Механизм выделения живицы на срезе объясняется действием осмотического и секреторного давления, а также сосущей силой транспирационных токов. Образуемая в клетках эпителия живица выделяется в канал смоляного хода под действием секреторного давления этих клеток, которое при закрытом смолоходе преодолевает осмотическое давление протопласта и сдавливает выстилающее клетки, вытесняя воду из них в слой мертвых клеток. При открытом смолоходе секреторное давление на выстилающие клетки снижается, они набухают за счет влаги, отсасываемой из окружающих клеток, и находятся в тур горсцирующем состоянии, под которым понимается упругое растяжение их оболочки. [c.196]

    Водорастворимые примеси оказывают отрицательное влияние на защитные свойства лакокрасочных покрытий Это проявляется во взаимодействии их с функциональными группами пленкообразующих веществ или в стимулировании процессов электрохимической коррозии В первом случае образуются соединения (соли, мыла, комплексные соединения), затрудняющие процесс формирования (отверждения) покрытия Во втором случае под лакокрасочным слоем происходит накопление влаги в результате ее осмотического переноса Скорость осмотического всасывания воды зависит от природы н содержания водорастворимых примесей (электролитов) Образуюцдайся раствор электролита вызывает подпленочную электрохимическую коррозию, которая особенно опасна, поскольку обнаружить ее трудно [c.233]


Смотреть страницы где упоминается термин Влага осмотическая: [c.62]    [c.734]    [c.592]    [c.87]    [c.219]    [c.212]    [c.213]    [c.215]    [c.48]   
Основные процессы и аппараты Изд10 (2004) -- [ c.591 , c.592 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.625 ]




ПОИСК





Смотрите так же термины и статьи:

Фаг осмотический шок



© 2025 chem21.info Реклама на сайте