Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биохимическое восстановление механизм

    Затем может происходить расщепление вновь образовавшейся связи С—О в результате смещения электронов от спиртовой части аддукта к флавину [уравнение (8-53), стадия б]. Продуктами являются восстановленный флавин и альдегид. К тому же результату приводит перенос гидрид-иона от углеродного атома спирта, однако в этом случае водород отделяется от углерода в форме протона. Фактически оба водорода исходного субстрата (при кислороде и при углероде) диссоциируют в форме протонов, причем в процессе расщепления аддукта электроны переносятся в виде электронной пары. Гамильтон утверждал, что перенос гидрид-иона — явление редкое в биохимических процессах, и одна из причин этого заключается в том, что изолированный гидрид-ион имеет большой диаметр в отличие от протона, который сравнительно мал и обладает большой подвижностью. Исходя из этого, Гамильтон считал, что дегидрирование чаще всего осуществляется механизмами переноса протона. [c.262]


    С эволюционной точки зрения самое интересное в функции бурой жировой ткани — то, что здесь, так же как и в случае термогенеза, не связанного с дрожью (стимулируемого щитовидной железой), мы имеем дело с небольшим видоизменением предсуществовавшей биохимической системы и ее использованием для совершенно иной физиологической цели. Регуляция механизмов окислительного фосфорилирования позволяет здесь бесполезно рассеивать энергию электронов, отнимаемых от остатков ацетил-КоА в цикле Кребса. Но если мы посмотрим на эту растрату с точки зрения интересов организма в целом, мы увидим, что функция бурой жировой ткани служит эффективным и быстрым (хотя в энергетическом смысле дорогостоящим) средством поддержания или восстановления эндотермии. Тот факт, что млекопитающие растрачивают различными способами так много энергии на терморегуляцию, показывает, насколько велики преимущества, которые можно получить, ограждая биохимические механизмы клеток от колебаний температуры. [c.241]

    Учитывая наличие внутриклеточных механизмов восстановления биохимических повреждений, вызванных ионизирующей радиац,ией, не исключается возможность, что радиация повреждает и ГЦ и АТ-пары, но на последние эффективнее действуют восстановительные системы. [c.185]

    В учебнике изложены основы общей биохимии и биохимии мышечной деятельности организма человека, описаны химическое строение и процессы метаболизма наиболее важных веществ организма, раскрыта их роль в обеспечении мышечной деятельности. Рассмотрены биохимические аспекты процессов мышечного сокращения и механизмов энергообразования в мышцах, закономерности развития двигательных качеств, процессов утомления, восстановления, адаптации, а также рационального питания и диагностики функционального состояния спортсменов. [c.2]

    Биохимические функции. Б организме сопряженная окислительно-восстановительная пара — аскорбиновая кислота и дегидроаскорбиновая кислота — является активным антидотом свободнорадикальных механизмов, протекание которых усиливается при патологических состояниях. Аскорбиновая кислота также участвует в процессах превращения ароматических аминокислот в некоторые нейромедиаторы, в синтезе ряда стероидных гормонов (кортикостероидов), в процессах кроветворения, в образовании белка соединительной ткани коллагена, в восстановлении ионов Fe " до Fe " " и во многих других биохимических процессах. [c.161]


    Многие биохимические превращения настолько малозаметны и требуют столь малых количеств реагентов, что их не удавалось проследить до тех пор, пока не был изобретен метод меченых атомов. Его применение оказало большую помощь в исследовании химии живых систем, поскольку он позволяет проследить in vivo за судьбой следовых количеств различных химических элементов, поступающих в организм с пищей (например, кобальта, цинка, иода), без вскрытия живого организма. Одними из самых замечательных достижений в этой области стали работы Кальвина, установившего механизм фотосинтеза, а также Шенхеймера, который пока- ал, что любая ткань в организме непрерывно подвергается процессу разрушения и восстановления. [c.477]

    Механизм фиксации азота долгие годы был интригующей химической и биохимической проблемой отчасти из-за характерной химической инертности молекулы азота. Самая старая и самая общепринятая гипотеза была выдвинута Виландом еще в 1922 г. согласно этой гипотезе, молекула азота восстанавливается в три стадии (схема 6). Однако в процессе восстановления азота не было обнаружено ни одно из предполагаемых промежуточных соединений (диимин и гидразин). Более того, диимин вообще не восстанавливается этим ферментом, хотя гидразин при действии нитрогеназы превращается в аммиак. В последние годы предпринимались попытки решить эту проблему с помощью химических исследований. Так, Чатт и сотр. [9] показали, что комплекс металл— азот типа М(Н2)2(РРз)4 (где М = Мо или Ш) при обработке серной кислотой в метаноле образует аммиак с выходом до 90%- Этим исследователям удалось, используя различные лиганды фосфиновой природы и различные кислоты, получить вольфрамовые и молибденовые комплексы, в состав которых входят содержащие азот лиганды (N2H, N2H2 и М2Нз), соответствующие различным стадиям восстановления азота. В аналогичных исследованиях Ван Тамелен и Брюле [10] нашли, что молибденовое комплексное соединение (7) при обработке бромоводородной кислотой в Л -метилпирролидоне образует аммиак (0,36 моль на 1 моль комплекса). [c.402]

    В. Окисление супврокоид-анионом. Супероксид-анион 0 , однозлектронно восстановленная форма (кислорода, обнаружен на поверхности различных ка тализаторов окисления. Кроме того, он является активной частицей в биохимических окислительных процессах, ускоряемых оксигеьазой и оксидазой. Эти ферменты, содержащие металлы, такие, как Си, Ъп, Мп и Ге, как известно, способсгауют диспропорционированию аниона 0 До молекулярного кислорода и пероксида водорода [ 46]. Изучение механизма взаимодействия О с комплексами переходных металлов необходимо для понимания принципа действия таких супероксиддисмутаз. [c.214]

    В фотосинтетических системах фиксация восстановленного СО осуществляется темновой реакцией, в которой используется энергия НАД и АТФ. Если бы удалось (рассматривая фотосинтетическую систему как черный ящик с неизвестным механизмом действия) создать искусственную систему, которая синтезировала бы под действием облучения из воды и углекислого газа органические соединения, то это позволило бы биохимически разрешить проблемы питания. Для сравнения укажем, что современные искусственные системы (работающие на длинах волн до 450 нм) намного уступают биологическим объектам. Например, скорость связывания углекислого газа водорослями hlorella pyrenoidosa составляет 3000 мкл-(мг хлорофилла) -ч", а в искусственных фотосинтетических системах значительно меньше 100 мкл (мг сенси-билюатора)" -ч . Поэтому связывание химической энергии в эндотермической реакции воды и углекислого газа все еще остается заветной мечтой химиков. [c.134]

    Все вышеупомянутые реакции молекулярного азота связаны с участием комплексов переходных металлов, содержащих треш-фосфи-ны, т -циклопентадиенильные группы или обычные неорганические лиганды. С другой стороны, изучение активных центров фермента нитрогеназы показало, что в непосредственной близости от железосерной простетической группы типа ферредоксина располагаются один или два иона молибдена (III -V). Предполагалось, что атомы молибдена связаны с серными лигандами. Один из предложенных механизмов биохимической фиксации азота включает "боковую" (или Т1 -) координацию молекулы азота к восстановленному атому молиб- [c.186]

    Обширный класс химических соединений с гербицидными свойствами составляют производные мочевины. Они почти всегда применяются в качестве почвенных гербицидов системного действия. Биохимический механизм их действия на растения основан на ингибировании фотосинтеза, который определяют in vitro по так называемой реакции Хилла. Эта реакция происходит в присутствии изолированных хлоропластов в водной среде, причем вода под влиянием блокёров фотосинтеза подвергается фотолитическому расщеплению с образованием кислорода и водорода. Посредством подходящих акцепторов, например липоновой кислоты, водород переносится на пиридиновый кофермент и используется для гидрирования углекислого газа. Измеряют происходящее на свету превращение углекислого газа и образование кислорода. В качестве другого механизма действия производных мочевины следует назвать угнетение восстановления цитохрома. [c.237]


    Биохимический механизм раздражающего действия поверхностноактивных веществ еще недостаточно изучен, но, по-видимому, он неодинаков у разных поверхностноактивных веществ. Часто говорят об обезжиривании, или удалении кожного сала и жиров из кожи, как о причине раздражающего действия. Этот эффект, несомненно, является одной из причин раздражающего действия, так как в результате обезжиривания кожа оказывается менее защищенной [48], чем нормальная кожа, а для восстановления первоначального покрова (накопление липоидов) требуется значительное время. Однако простое обезжиривание не дает полного объяснения всей картины. Действительно, моющее вещество легко адсорбируется на коже и вполне вероятно, что оно оказывает дубящее-действие на эпидермис [49]. Повышенное набухание изолированного эпидермиса при действии различных поверхностноактивных веществ и влияние обезжиривания на водный баланс кожи также могут быть причинами раздражения [50]. Недавно было выдвинуто предположение о денатурирующем действии поверхностноактивных веществ на белки эпидермиса. Доказательством служит то обстоятельство, что после воздействия на кожу этих веществ титрованием обнаруживается большее количество сульфгидриль-ных групп, чем до применения поверхностноактивных веществ 51]. Этот эффект связывают с раздражающим действием. [c.274]

    Мощность работы связана обратно пропорциональной зависимостью с ее продолжительностью, при этом чем больше мощность, тем быстрее происходят биохимические изменения, ведущие к утомлению и прекращению работы. Исходя из мощности работы и механизмов энергообеспечения все циклические упражнения, согласно классификации В.С. фарфеля (1975), разделяют на четыре зоны максимальную, суб-максимальную, большую и умеренную. Предельная длительность работы в зоне максимальной мощности составляет 25—30 с, в зоне субмаксимальной мощности — от 30 с до 3—5 мин, в зоне большой мощности — от 3—5 до 50 мин, а в зоне умеренной мощности — от 50—60 мин до 4—5 ч. Основные биохимические показатели крови при выполнении работы в отдельных зонах мощности представлены в табл. 27, а направленность и источники энергообеспечения работы в отдельных зонах мощности и продолжительность их восстановления после работы — в табл. 28. [c.345]

    Однако дальнейшее увеличение нагрузок вначале ведет к прекращению прироста адаптационных сдвигов (предельные нагрузки), а затем к снижению тренировочного эффекта (запредельные нагрузки). Такое влияние объема выполненной работы на развитие адаптации обусловлено тем, что в зоне предельных нагрузок происходит полное использование всех имеющихся в организме спортсмена биохимических и функциональных резервов, приводящее к максимальной суперкомпенсации. Запредельные нагрузки очень большой интенсивности или продолжительности, несоответствующие функциональному состоянию организма, вызывают столь глубокие биохимические и физиологические сдвиги, что полноценное восстановление становится невозможным. Систематическое использование таких нагрузок непременно приводит к нарушению механизмов адаптации, т. е. к срыву адаптации или дезадаптации, что выражается ухудшением двигательных качеств, снижением работоспособности и результативности. Это явление в спорте называется перетре-нированностью. [c.184]

    Высказанные выше соображения касались механизмов развития начального радиационного поражения. Последнее десятилетие ознаменовалось крупнейшим открытием не только для радиационной биологии, но и для молекулярной биологии в целом. Доказано существование ферментативных систем, способных репарировать начальные радиационные повреждения генетического аппарата клетки. Изучение биохимических механизмов репаративных процессов показало, что облученные клетки способны выщеплять поврежденные азотистые основания, воссоединять разрывы полинуклеотидных цепей ДНК. Постепенно перед исследователями начинает развертываться сложная картина борьбы облученной клетки за выживание и сохранение нативных свойств путем активации репарирующих систем. Эти идеи привели к существенной трансформации представлений о характере действия ионизирующей радиации на клетку. Если на заре развития радиобиологии предпочтение отдавалось статичным моделям, которые рассматривали гибель клетки как результат простого поражения гипотетических субклеточных мишеней, то для современного периода характерен динамический подход, который в целом соответствует представлениям динамической биохимии и биофизики. Становится общепринятым рассмотрение радиобиологического эффекта как результата интерференции двух противоположно направленных процессов — развития начального радиационного поражения и его элиминации за счет функционирования репарирующих систем. Основываясь на этом, Хуг и Келлерер предложили в качестве общей теории действия ионизирующих излучений на клетку стохастическую гипотезу . Она базируется на представлениях о том, что случайные и диффузно расположенные акты ионизации и возбуждения только в редких и маловероятных случаях однозначно приводят клетку к гибели. На эту стохастику первого порядка должна накладываться стохастика более высоких порядков , которая определяется динамической нестабильностью жизненных процессов, способных элиминировать или усиливать начальное радиационное повреждение. Разработанный авторами математический аппарат позволяет формально оценить вероятность перехода повреждения с одного уровня на следующий (развитие повреждения) или обратного перехода, связанного с восстановлением радиационного повреждения. Предложенные математические модели позволили Хугу и Келлереру получить семейство дозных кривых, хорошо согласующихся с наблюдаемыми в реальных экспериментах на клетках. Это послужило важным критерием приложимости динамических моделей для объяснения радиобиологических феноменов. [c.135]

    Блокирование ферментов, участвующих в образовании тимиди-новых и других дезоксинуклеотидов, вызывает задержку синтеза ДНК. Ингибирование репликации ДНК, возникающее вследствие дефицита предшественников, облегчает протекание репарационных процессов на матрице еще до момента развития первичных радиационных повреждений. Считается, что облученная ДНК становится более доступной к действию ферментов, конкурирующих за субстрат, реализующих и репарирующих повреждения (Газиев, 1975, 1978). Временное блокирование тиольным протектором репликации ДНК способно, по мнению Е. Ф. Романцева и др. (1977), устранить конкуренцию ферментов за субстрат ДНК, облегчить тем самым репарацию ДНК и снизить накопление бракованных деталей , поскольку за этот период часть повреждений ДНК успевает репарировать и последующее новообразование ДНК будет происходить иа частично восстановленной матрице. Рассмотренный механизм радиозащитного действия тиольных протекторов может быть применим к репродуктивному типу гибели клеток, находящихся в стадии синтеза ДНК, а адсорбционный механизм может иметь место лишь в случае интерфазной гибели клеток. Таким образом, гипотеза комплексного биохимического действия радиозащитных средств рассматривает охранительное торможение биосинтеза ДНК как один из важнейших компонентов этого комплекса. Однако авторы гипотезы не исключают участия аминотиолов в защите и на стадии образования первичных повреждений ДНК- [c.274]

    Существование биоритмов у микробов с коротким временем генерации подтверждено Л. Ю. Бержанской (1971), установившей высокочастотный ритм биолюминесценции у фотобактерий. Более того, обнаружена зависимость роста от времени суток даже у эшерихий, отличающихся, как известно, самой короткой продолжительностью времени генерации (Guillot, 1971). Известно, что прокариоты зависят от внешней среды больше, чем эукариоты. Механизмы гомеостаза у них менее совершенны, но рецепция сигналов средовых факторов клеточной стенкой осуществляется одинаково (Berridge, 1975). Осциллятором, поддерживающим автономный циркадианный ритм у одноклеточных, могут быть цепь биохимических реакций, флуктуации интенсивности распада и синтеза молекул, окисления и восстановления (Гудвин, 1966). [c.78]

    В этой же заявке описан механизм работы биохимического топливного элемента с нерасходуемыми электродами, покрытыми колониями живых организмов. На аноде помещались бактерии (Psendomonas), потребляющие кислород, на катоде — сине-зеленая водоросль, его выделяющая. Таким образом, на катоде элемента идет реакция восстановления кислорода до ОН-, а на. аноде— образование кислорода, поглощающего бактериямиг [c.213]

    Биохимические механизмы защиты предотвращают обезвоживание клетки, обеспечивают детоксикацию продуктов распада, способствуют восстановлению нарушенных структур цитоплазмы. Высокую водоудерживающую способность цитоплазмы в условиях засухи поддерживает накопление низкомолекулярных гидрофильных белков, связывающих в виде гидратных оболочек значительные количества воды. Этому помогает также взаимодействие белков с нролином, концентрация которого значительно возрастает в условиях водного [c.422]


Смотреть страницы где упоминается термин Биохимическое восстановление механизм: [c.237]    [c.346]    [c.393]    [c.143]    [c.369]    [c.389]    [c.271]    [c.8]    [c.8]    [c.369]   
Новые методы препаративной органической химии (1950) -- [ c.274 ]




ПОИСК







© 2025 chem21.info Реклама на сайте