Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фотосинтезирующие

    Действительно, общий цикл обмена веществом и энергией для живых организмов можно упрощенно представить как инициирующее этот цикл образование сложных молекул типа углеводов из СО2 и воды в ходе фотосинтеза растений с последующей деградацией продуктов фотосинтеза вновь до СО2 и воды в процессах дыхания в рассматриваемом организме. При этом уменьшение энтропии происходит только в момент электронного возбуждения молекулы хлорофилла за счет поглощения фотосинтезирующими организмами носителей чистой свободной энергии — квантов солнечного света, в результате чего становится возможным протекание первичных фотосинтетических реакций образования энергоемких веществ. Все происходящие далее биохимические процессы носят необратимый характер и идут только с увеличением [c.297]


    У зеленых растений трансформация энергии происходит на мембранах тилакоидов хлоропластов, а у фотосинтезирующих бактерий— на мембранах хроматофоров. Увеличение ионной проводимости мембран приводит к рассеиванию энергии в виде теплоты, а разрушение мембран — к полной потере способности к аккумуляции энергии. [c.160]

    Разрабатываются два типа фотокаталитических систем для разложения воды 1) полупроводниковые, сочетающие в себе свойства одновременно и электрических солнечных батарей, и устройств для электролиза воды, и 2) молекулярные, являющиеся искусственными аналогами природных фотосинтезирующих систем. Создание последних систем предполагает разработку катализаторов для трех взаимосвязанных процессов фотокатализаторов (ФК) для ста- [c.261]

    Выяснение механизма сенсибилизированного фотоокисления дает возможность сделать несколько полезных выводов по отношению к фотобиологии. Например, рассмотрим защитное действие каротиноидов в биологических системах. Очевидно, каротиноиды защищают фотосинтезирующие организмы от летального действия их собственного хлорофилла (см. с. 231), который является превосходным сенсибилизатором фотоокисления. Было показано, что -каротин — крайне эффективный ингибитор синглетного кислорода и может также ингибировать фотоокисление. Например, -каротин в концентрации [c.175]

    Отсюда следует интересный вывод, что каротиноиды несут двойную функцию в фотосинтезирующих организмах во-первых, они удаляют токсичный синглетный кислород и, во-вторых, могут сохранять энергию, полученную Ог от хлорофилла, которая иначе будет потеряна. [c.176]

    Фотосинтез — вероятно, наиболее важный из большого числа интересных фотохимических процессов, известных в биологии. От него зависела эволюция атмосферы Земли животные, поедая растения, также черпают энергию Солнца, запасенную фотосинтезом. Согласно оценке, общая масса органического вещества, созданного зелеными растениями в течение биологической истории Земли, составляет 1 % массы планеты. Каждый год в процессе фотосинтеза запасается энергия, эквивалентная десятикратному годовому ее потреблению человечеством. В этом разделе мы обсудим фотосинтез зеленых растений, хотя существуют также другие фотосинтезирующие организмы (например, некоторые бактерии), у которых процессы фотосинтеза могут несколько отличаться. [c.228]

    Спектр поглощения хлорофилла а в органических растворителях имеет два основных и два второстепенных пика. Один из основных пиков располагается в голубой и ближней УФ-об-ластях спектра, а другой — в красной. У фотосинтезирующих организмов помимо хлорофилла а обычно содержатся один или [c.230]


    Таким образом, суммарный результат фотосинтеза состоит в связывании диоксида углерода, окислении воды до молекулярного кислорода и синтеза углеводов. Образование кислорода как побочного продукта фотосинтеза не является универсальным свойством фотосинтезирующих организмов. Например, у некоторых бактерий фотосинтеза процесс выражается схемой [c.162]

    Молекулы хлорофилла представляют собой хромофоры, с помощью которых поглощается свет. В фотосинтезирующих организмах могут содержаться два и более типов молекул хлорофилла. В зеленых растениях содержатся хлорофиллы а и й, структура которых показана на рис. 63. Поглощение света в видимой области спектра обусловлено наличием сильно сопряженной порфири-новой системы. Как видно из рис. 64, хлорофилл поглощает свет наиболее интенсивно в синей и красной областях спектра, но отражает зеленый, желтый и оранжевый свет. Этим определяется характерный зеленый цвет растений. [c.162]

    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]

    В это.м уравнении НгА может обозначать Нг5 (как в пурпурных серных бактериях), элементарный водород Нг, изопропанол и т. д. Рассмотрев множество реакций такого рода, Ван-Ниль пришел к логическому заключению, что у сине-зеленых водорослей, выделяющих О2, и у эукариотических растений в роли окисляемого субстрата, представленного в уравнении (13-25), выступает вода. Ее расщепление приводит к образованию О2 и поставляет атомы водорода, необходимые для процесса восстановления. Интересно, что такое фотохимическое расщепление является единственной известной реакцией биологического окисления Н2О. Ни один из окислителей, имеющихся в живых организмах, не является достаточно мощным, чтобы отщепить атомы водорода от молекулы воды этой способностью наделены лишь фотохимические реакционные центры фотосинтезирующих организмов. [c.37]

    В химическом отношении фотосинтезирующие единицы были охарактеризованы исходя из числа разного рода молекул, находящихся в мембране хлоропласта и приходящихся на пару атомов марганца (табл. 13-2). Каждая такая единица предположительно содержит один реакционный центр фотосистемы I и один реакционный центр фотосистемы II. [c.46]

    Почему эффект усиления Эмерсона (разд. Д, 1) не наблюдается у фотосинтезирующих бактерий  [c.76]

    По данным Б.С. Соколова, в развитии живого мира планеты выделяют пять основных этапов первый (4,25 млрд. пет) — эобиотный, появление простейших гетеротрофных систем, способных к самовоспроизведению второй (3,7 — 3,5 млрд. лет) — возникновение фотосинтезирующих механизмов у прокариотических прототипов третий (1,9 — 1,6 млрд. лет) — [c.186]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    При процессе ассимиляции СО2 фотосинтезирующими автотроф-иыми микробами имеет большое значение образование кислорода, который используется организмами, минерализующими органиче ское вещество в аэробных условиях. Этот кислород выделяется мелкими пузырькамп на поверхности водной растительности. Пузырьки отчетливо видны в солнечный день. Значительная часть кислорода, выделяющегося в воду, немедленно растворяется в ней. Причем растворимость его в воде в пять раз больше, чем растворимость кислорода из воздуха. [c.255]


    Цитоплазма эвглены содержит ядро и многочисленные (более двадцати) зеленые овальные хлоропласты, придающие ей зеленый цвет. В хлоропластах содержится хлорофилл, с помощью которого этот организм фотосинтезирует клеточное вещество, как растения. Но хлорофилл исчезает, когда эвглена попадает в темноту. В новых условиях она усваивает растворенные органические вещества. Следовательно, этот организм на свету проявляет шризнаки растения, а в темноте — животного, Продукты обмена и избыточная влага выводятся из организма через сократительную вакуоль. Разм 10жается эвглена простым делением. Образует цисты. [c.277]

    Растительные клетки, как и все другие, постоянно дышат, т. е. поглощают кислород и выделяют углекислоту. Днем наряду с дыханием растительные клетки гфеобразуют световую энергию в химическую — они синтезируют органические вещества. При этом в качестве побочного продукта реакции выделяется кислород. Количество кислорода, выделяемого растительной клеткой в процессе фотосинтеза, в 20—30 раз больше, чем поглощаемого в одновременно идущем процессе дыхания. Днем, когда растения дьштт и фотосинтезируют, они обогащают воздух кислородом, а ночью, когда фотосинтез прекращается, они только дышат, т. е. поглощают кислород и выделяют углекислоту. [c.609]

    Фотосинтез является непременным условием жизни растений и животных, будучи фактически самым крупномасштабным синтетическим процессом на Земле. Как считает П. Нобел, за год фотосинтезирующими организмами фиксируется и переводится в форму органических соединений около 5-10 г (50 млрд. т) углерода, причем большая часть его фиксируется фитопланктоном, живущим вблизи поверхности океанов. Это количество соответствует параллелепипеду, сложенному из фотосинтетиче-ских продуктов, с основанием 1 км и высотой несколько более 100 км. Источником углерода для фотосинтеза служит атмосферный СО2 (содержание в атмосфере составляет 0,03%), а также СО2 и НСОз растворенные в воде озер и океанов. Из продуктов фотосинтеза, кроме органических соединений, очень важное значение имеет кислород, необходимый для всех организмов, обладающих дыханием. Весь кислород, содержащийся в атмосфере, был образован путем фотосинтеза за несколько тысячелетий. [c.161]

    К 1880 г. относятся классические работы Виноградского, открывшего осуществляемые в природе темновые варианты хемосинтетической ассимиляции СО 2, сохранившиеся до сих пор на земле в жизненном цикле многих бактерий (пурпурных и зеленых серобактерий) потомков тех первичных безъядерных еще и бесхлорофилльных организмов, которые возникли в декембрийские времена. Эти бактерии анаэробны, так как возникли в эпоху, когда газовая оболочка земли еще не содержала свободного кислорода, и использовали при ассимиляции СО 2 не воду и фотопроцесс, а темповую реакцию со свободным водородом или водородом, отнимаемым от молекул НаЗ в результате в отличие от фотосинтезирующих организмов эти бактерии выделяют не свободный кислород, а серу, скопляющуюся в мощных природных отложениях. [c.340]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    На рис. 32 видно, что основные запасы приходятся на нефти, в которых п/ф 1 Вероятно, эти нефти образовались из ОВ, фоссилизация которого протекала в наиболее благоприятной окислительно-восстано-вительной обстановке. Примечательно, что низким генерационным потенциалом обладает ОВ, продуцирующее нефти с п/ф < 0,6, а также ОВ, из которого образуются нефти с п/ф > 2. Низкий потенциал ОВ с п/ф > > 2 объяснить нетрудно окисление исходного ОВ приводит к потере его основной массы, а также к глубокой перестройке его структуры, что и является причиной его низкого генерационного потенциала. Нефти, а чаще всего конденсат-ы, с таким высоким п/ф редко образуют крупные залежи. Эту особенность отмечали А.Э. Конторович и О.Ф. Стасова, Е.И. Бодунов и А.И. Изосимова, Не совсем понятна природа ОВ, которое служит источником нефтей с п/ф = 0,6. Возможно, его основой является биомасса с большим вкладом фотосинтезирующих организмов (и потому богатая хлорофиллом и фитолом), но по каким-то причинам слабо тран- [c.131]

    Наряду с использованием СОг, пурпурные и зеленые бактерии, а также нек-рые др. фотосинтезирующие организмы ассимилируют при Ф. орг. соед. (напр., уксусную и пирониноградпую к-ты). Мн. фотосинтезирующие бактерии способны также к фотоассимиляции N2. [c.633]

    Фотохимическое восстановление СОг в органические соединения слу-, жит основным источником энергии для биосферы, несмотря на то что к числу организмов, в которых идет этот процесс, относится лишь несколько родов фотосинтезирующих бактерий (табл. 1-1) (включая сине-зеленые водоросли), а также эукариотические водоросли и высшие зеленые растения. Теперь уже повсеместно признано, что в ходе фо-топроцессов в этих организмах генерируются NADPH (или восстановленный ферредоксин) плюс АТР (гл. И, разд. Г, 2) [77—79]. Однако эта точка зрения далеко не всегда представлялась очевидной. Рассмотрим суммарную реакцию образования глюкозы в ходе фотосинтеза у высших растений  [c.36]

    Различие между фотосинтезирующими бактериями и зелеными растениями стало еще более очевидным после экспериментов Р. Эмерсона и его сотрудников [79Ь], выполненных в 1956 г. Было известно, что свет с длиной волны 650 нм намного более эффективен, чем свет с длиной волны 680 нм. Однако Эмерсон и др. показали, что сочетание света этих двух длин волн дает более высокую скорость фотосинтеза, чем свет с каждой из указанных длин волн по отдельности. Это позволило предположить, что существуют две разные фотосистемы. Фотосистема, известная теперь как фотосистема I, активируется далеким красным светом (- 700 нм), тогда как фотосистема II — красным светом с более высокой энергией (- 650 нм). Это положение подтверждается множеством разных фактов. Еще в 1937 г. Хилл [79с] показал, что фотосинтетическое образование О2 может идти с использованием мягких окислителей, таких, как феррицианид и бензохинон, а Г. Гаф-фрон [79(1] обнаружил, что некоторые зеленые водоросли способны вести фотоокисление Нг до протонов [уравнение (13-25)], используя электроны для восстановления МАОР. Таким образом, фотосистема I может быть отделена от фотосистемы П. [c.37]

    Еще один важный эксперимент (поставленный Эмерсоном и Арнольдом [79е]) был основан на использовании очень коротких вспышек света. При измерении квантового выхода фотосинтеза обнаружился поразительный факт за один цикл работы фотосинтезирующего аппарата листьев на каждые 3000 молекул хлорофилла высвобождалась лишь одна молекула Ог. Вместе с тем подсчеты показывали, что на каждую высвободившуюся молекулу Ог поглощалось лишь около вось- [c.38]

    Чем различаются процессы фотосинтеза у растений (рис. 13-18) и бактерий Ответ очевиден бактерии имеют только фотосистему I, а фотосистема II, в результате функционирования которой высвобождается 2, у них отсутствует. Экспериментально показано, что образование фотосинтезирующими бактериями восстанавливающих эквивалентов (восстановленного ферредоксина или NADPH) требует примерно вдвое меньшего числа квантов света, чем это необходимо зеленым растениям, в которых должна расщепляться НгО. [c.39]

    Приблизительный состав усредненной фотосинтезирующей единицы хлоропластов шпинaтa б [c.41]

    Фотосинтезирующие бактерии содержат бактериохлорофиллы, у которых восстановлено кольцо II (рис. 13-19). Полоса поглощения этих соединений сдвинута относительно полосы поглощения хлорофилла а в красную сторону до - 770 нм. Основной хлорофилл зеленых серных бактерий СМогоЫит — хлоробиум-хлорофилл — имеет оксиэтильную и фарнезильную боковые цепи. К числу производных хлорофилла относятся феофитины, образующиеся в результате удаления Mg + при обработке хлорофилла слабой кислотой. В результате гидролиза сложноэфирной метильной группы образуются хлорофиллы, а при одновременном удалении метильной и фитильной групп — хлорофиллины. [c.41]

    Поскольку хлорофиллы легко и полностью экстрагируются мягкими растворителями [81], можно подумать, что они попросту растворены в липидном компоненте мембран. Однако в спектре поглощения хлорофилла в листьях присутствуют полосы, сдвинутые в красную сторону относительно их положения в спектре хлорофилла а в ацетоне, причем величина сдвига достигает 900 см . В большинстве зеленых растений хлорофилл имеет по меньшей мере четыре основные полосы с Ятах = 662 нм (15 120 см->), 670 нм (14940 см ), 677 нм (14770 см ) и ооЗ нм (14 630 СМ ) [82]. Иногда наблюдаются также минорные поло-с Vmax = l4 420 и 14 230 СМ (рис. 13-20). Отсюда можно сделать вывод, что молекулы хлорофилла внутри мембран находятся в разном окружении. В результате спектр поглощения становится шире, опособ-ртвуя более эффективному улавливанию света. Считается, что в реак- онных центрах тоже имеется хлорофилл в фотосинтезирующей сис- ме I он поглощает при 700 нм (14290 см ), а в фотосистеме II — 682 нм (14 660 см- ). [c.41]

    Бактериохлорофилл, содержащийся в клетках hromatium, тоже имеет три полосы поглощения с Лтах = 800, 850 и 890 нм. Последняя полоса соответствует бактериохлорофиллу реакционного центра — единственной из форм, которая флуоресцирует. Водорастворимый бактерио-хлорофиллсодержащий белок, выделенный из зеленых фотосинтезирующих бактерий hlorobium, удалось получить в кристаллическом виде. Расщифровка трехмерной структуры этого белка с помощью рентгеновской кристаллографии [83] показала, что каждая из субъединиц (с мол, весом 50 ООО) тримерной (МОлекулы содержит семь встроенных молекул бактериохлорофилла, как это показано на рис. 13-20, . В зе- [c.42]

    Вопрос о возможной организации тилакоидных мембран в фотосинтезирующие единицы, или квантосомы, пока не решен [86, 87]. Как было показано методом замораживания — травления, диаметр квантосом 20 нм, а толщина - 10 нм. Однако некоторыми исследователями были выявлены лишь частицы кубической формы меньшего размера которые могли быть молекулами рибулозодифосфат-карбоксилазы (ребро куба - 12 нм гл. 7, разд. К, 3,ж) или молекулами фактора сопряжения с синтезом АТР (ребро куба 10 нм, разд, Д, 6). [c.46]

    Природа соединения Q точно неизвестна, но большинство исследователей считают, что это один из пластохинонов (PQ). Пластохинон А, преобладающий в хлоропластах шпината, имеет структуру, изображенную на рис. 10-8, с девятью изопреноидными звеньями в боковой цепи. В хлоропластах шпината присутствует по меньшей мере шесть других пластохинонов. Особенно широко распространены пластохиноны С, гид-роксилированные в различных положениях боковой цепи. В пластохи-ноне В эти гидроксильные группы ацилированы. Имеется целый ряд других модификаций, включая и различия в числе изопреноидных звеньев в боковых цепях [103, 104]. Таким образом, в цепи переноса электронов может функционировать одновременно несколько разных пластохинонов. По имеющимся оценкам, на каждый реакционный центр приходится около пяти молекул пластохинонов, так что пластохиноны могут служить своего рода электронным буфером между двумя фотосинтезирующими системами. В соответствии с этим считается, что Q представляет собой малый пул пластохинонов, связанный с реакционным центром и отделенный от большего пула реакцией, ингибируемой D MU. [c.49]

    Бенеман и др. использовали систему, содержащую хлоропласты, ферредоксин и гидрогеназу, для фотосинтетического получения Нг [131], отметив при этом, что такой процесс может стать прототипом метода улавливания солнечной энергии. В другой фотохимической системе для синтеза водорода были использованы азотфиксирующие гетероцисты и фотосинтезирующие вегетативные клетки сине-зеленых водорослей АпаЬаепа суИпйгка [132]. В этом случае образование водорода обеспечивает нитрогеназная система [уравнение (14-5)]. [c.61]

    Фотохимическое образование бактериями Нг является только одним из примеров разнообразных процессов фотометаболизма в фотосинтезирующих организмах [132а]. Другим примером такого рода служит происходящее под действием света поглощение ацетата пурпурными бактериями с превращением его в поли-р-оксибугират. [c.61]


Смотреть страницы где упоминается термин фотосинтезирующие: [c.116]    [c.95]    [c.278]    [c.263]    [c.372]    [c.231]    [c.633]    [c.136]    [c.40]    [c.43]    [c.44]    [c.54]   
Основы биохимии Т 1,2,3 (1985) -- [ c.376 ]




ПОИСК







© 2025 chem21.info Реклама на сайте