Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания сильные и слабые

    При титровании слабых кислот слабыми основаниями (или наоборот) кислотная часть кривой титрования отвечает титрованию слабой кислоты сильным основанием. Щелочная часть кривой титрования совпадает с кривой титрования слабого основания сильной кислотой. Для точки эквивалентности величину pH находят из уравнения константы гидролиза соли следующим способом. [c.270]


    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]

    Титрование слабых оснований сильными кислотами (или наоборот) 267 [c.267]

Рис. 155. Потенциометрическое титрование сильным основанием сильной кислоты (/) и слабой кислоты (2). Рис. 155. Потенциометрическое <a href="/info/689521">титрование сильным основанием сильной кислоты</a> (/) и слабой кислоты (2).
    Катионы сильных оснований N3+, a +, Ва + и анионы сильных кислот С1, 505 не принимают участия в этих реакциях, поскольку не могут образовать с ионами воды и ОН малодиссоциированных соединений. Таким образом, водные растворы уксуснокислых солей (ацетатов), образованных сильными основаниями, имеют щелочную реакцию, а растворы аммониевых солей сильных кис лот — кислую реакцию. В случае ацетата аммония и катион, и анион принимают участие в реакции гидролиза, однако раствор сохраняет нейтральную реакцию, так как образующиеся уксусная кислота и гидроксид аммония — электролиты равной силы (с. 127), В других случаях, например при гидролизе NH4 N, для определе ния характера раствора необходимо сопоставить константы диссоциации слабого основания и слабой кислоты, образующихся при гидролизе соли. [c.130]

    В табл. 5-3 указаны константы ионизации ряда кислот в водных растворах там же приведены оценки для сильных кислот, маскируемые растворителем в водном растворе. Диссоциация протонированного растворителя Н3О на гидратированные протоны и HjO представляет собой просто миграцию протонов от одних молекул воды к другим и должна характеризоваться константой равновесия = 1,00. Если в качестве растворителя используется аммиак, все кислоты, сопряженные основания которых слабее, чем NHj, вследствие выравнивающего действия растворителя окажутся полностью ионизованными сильными кислотами. Таким образом, как фтористоводородная, так и уксусная кислоты в жидком аммиаке являются сильными кислотами. [c.217]


    Являются ли следующие кислоты и основания сильными, слабыми или средней силы  [c.105]

    Слабая кислота и ее соль защищают следующим образом раствор от изменения pH при добавлении небольшого количества кислоты или основания. Если добавляется основание, слабая кислота буфера его нейтрализует, предотвращая сильное изменение pH если добавляется кислота, то она нейтрализуется основанием - анионом слабой кислоты, также не допуская сильного изменения pH. [c.459]

    Согласно теории кислот и оснований Бренстеда - Лаури, вещество, являющееся источником протонов, представляет собой кислоту, а вещество, способное соединяться с протоном и удалять его из раствора, представляет собой основание. Когда кислота теряет свой протон, она превращается в сопряженное основание. Сильная кислота типа НС1 обладает слабым сопряженным основанием С1 , а слабая кислота, например НАс или КНГ имеет сравнительно сильное сопряженное основание. Ас или КНз. Всякая кислота, сопряженное основание которой значительно слабее Н2О (т. е. имеет меньшее сродство к протону Н , чем вода), должно полностью диссоциировать в водном растворе и поэтому представляет собой сильную кислоту. Кислоты, которые диссоциируют в водном растворе лишь частично, называются слабыми кислотами. [c.257]

    Титровать соль, образованную сильным основанием и слабой кислотой с показателем рК, все равно что титровать той же концентрации раствор слабого основания с показателем 14 —р/С в обоих случаях кривые титрования совершенно одинаковы. [c.284]

    В этом случае обобщенно можно сказать, что гидролиз по аниону происходит у солей сильных оснований и слабых кислот. [c.211]

    Укажите необходимые признаки веществ и растворов, для которых можно применять правило произведения растворимости (хорошая, плохая, малая, большая растворимость, сильный, слабый электролит, неэлектролит, соль, основание, кислота и т. д.). [c.107]

    Слабое основание Сильное основание [c.58]

    Поскольку в водных растворах вода присутствует в большом избытке, любая кислота, сопряженное основание которой слабее, чем HjO (т.е. имеет меньшее сродство к протону, чем HjO), должна быть почти полностью ионизована. По этой причине невозможно установить различие между силой таких кислот, как НС1 и H IO4 (хлорная кислота) в водных растворах. Обе эти кислоты в водном растворе полностью диссоциированы и поэтому являются сильными кислотами. Однако в растворителях, обладающих меньшим сродством к протону, чем вода, можно установить различия между НС1 и H IO4. Если в качестве растворителя используется диэтиловый эфир, хлорная кислота по-прежнему обладает свойствами сильной кислоты, но НС1 ионизуется лишь частично и, следовательно, оказывается слабой кислотой. Диэтиловый эфир не так сильно сольвати-рует протон, как вода (рис. 5-4). (Сольватация-это обобщение понятия гидратации, применяемое к любым, в том числе неводным растворителям.) Положение равновесия в реакции [c.217]

    Из рассмотрения этой кривой ясно, что она совершенно подобна кривым титрования растворов слабых оснований сильными кислотами. Действительно а) как и при титровании слабых осно- [c.283]

    Соответственно константа гидролиза соли, образованной сильным основанием н слабой трехосновной кислотой, равна ионному произведению воды, деленному на третью константу диссоциации кислоты  [c.134]

    Аналогично при нейтрализации слабого основания сильной кислотой [c.147]

    Этот вывод имеет общий характер, и, следовательно, нормальной соли, образованной сильным основанием и слабой [c.133]

    В одном из патентов указывается, что при окислении бутана в растворе уксусной кислоты в присутствии солей кобальта применение замедлителей, например соли сильного основания и слабой кислоты (ацетат натрия и др.), увеличивает выход альдегидов и кетонов [223]. [c.97]

    Титрование слабой кислоты сильным основанием или слабого основания сильной кислотой представляет собой более сложный процесс, потому что слабый титрант диссоциирован лишь частично. В таком случае приходится рассматривать равновесие диссоциации, обсуждаемое в следующем [c.228]

    Раствор хлорида натрия нейтрален и имеет pH = 7,0. Это понятно, поскольку хлорид натрия-соль сильного основания (гидроксида натрия) и сильной (хлористоводородной) кислоты, а когда такие вещества взяты в равных количествах, они должны полностью нейтрализовать друг друга. В отличие от этого ацетат натрия представляет собой соль сильного основания и слабой кислоты. Интуитивно можно ожидать, что раствор ацетата натрия окажется несколько основным, и это действительно так. Часть ацетатных ионов, образованных этой солью, соединяется с водой, образуя недиссоциированную уксусную кислоту и гидроксидные ионы [c.242]

    Обобщая этот лример, можио сделать вывод, что сильные кислоты вытесняют слабые из растворов их солей (аналогично сильные основания вытесняют слабые основания). [c.262]


    К сильным принадлежат сильные кислоты, сильные основания и большая часть солей. Сюда относятся не только соли, образованные сильным основанием или сильной кислотой, но большей частью и соли, образованные слабым основанием и слабой кислотой. Большинство сильных электролитов кристаллизуется в кристаллах с ионной решеткой, и сильными электролитами часто называют только такие вещества. [c.387]

    Рассмотрим гидролиз солей, образованных сильным основанием и слабой кислотой на примере цианида калия. В системе, состоящей из молекул K N и НгО, происходят следующие процессы диссоциации  [c.72]

    Составляя подобным же образом результаты изменения потенциала водородного электрода при титровании сильных кислот растворами оснований и слабых кислот растворами щелочей, легко убедиться, что скачок потенциала в к.т.т, резко убывает с уменьшением степени диссоциации реагирующих кислот и оснований, Если константы диссоциации кислоты и основания малы, го в т,э. вообще не наблюдается скачка потенциала или перегиба на кривой титрования. Табл. 4 иллюстрирует предельные значения констант диссоциации и концентрации титруемых слабых кислот или оснований. [c.68]

    При титровании слабых оснований сильными кислотами наблюдаются те же закономерности, что и в примерах 2 и 3. Разница лишь в том, что pH не повышается, а понижается, как это показано на рис. XVHI, 5. Расчет pH при этом ведется совершенно так же, как н при титровании слабой кислоты сильным основанием, только в формуле, соответствующей формуле (XVIII, 88), величины Сн+ и сон меняются местами. [c.506]

    Аналогично протекают реакция между сильными основаниями солями слабых оснований. Например, при действии гидроксида атр11я на су мьфат железа(II) выделяется гидроксид железа(II) [c.255]

    В реакции гндро.чпза вст пают солн, образованные слабой кислотой и слабым основанием, пли слабой кислотой и сильным основанием, или слабым основанием и сильной кислотой. Соли, образованные сильной кислотой и сильным основанием, гидролизу не подвергаются нейтрализация в этом случае сводится к процессу [c.258]

    Гидролиз солей, или их обменное взаимодействие с водой, происходит лишь в тех случаях, ко1 да ионы, образующиеся в результате электролитической диссоциации соли, -- катион, анион или оба вместе - способны образовывать с нонами нод1>1 Н и ОН малодиссо,циированные соединения. Гидро.лизу подвергаются соли, образованные а) слабыми кислотами и сильными основаниями б) слабыми основаниями и сильными кислотами и в) слабыми кислотами и слабыми основаниями. [c.129]

    Л гидр = Л и/Л кисл — 1<-онстанта ид[ ,олиза соли сильного основания и слабой однрЗШ Й кислоты. К р = КуКас — -он ст ант а гидролиза соли сильной кислоты й слабого одн основания. Константа гидролиза ацетата аммония имеет вид [c.131]

    Растворы солей, образованных сильными основаниями и слабыми многоосновиыми кислотами, имеют щелочную реакцию. Для приближенной оценки степени их гидролиза можно ограничиться только первой ступенью этого процесса, учитывая гидролиз образовавшейся гидросоли лищь при значительном разбавлении раствора. [c.134]

    Вопрос о сильных и слабых кислотах и основаниях, по-видимому, лучще всего рассматривать на данном уровне, позаботившись о том, чтобы учащиеся запомнили несколько часто встречающихся сильных кислот и оснований - тогда они могут исходить из того, что все ирочие кислоты и основания являются слабыми, если не оговаривается противоположное. [c.572]

    Рассмотрим процесс нейтрализации слабого основания сильной кислотой, например, NH4OH и НС1. В ионном виде процесс может быть записан так  [c.77]

    Н. Н. Безипгер и Г. Д. Гальнерн разработали схему классификации нефтяных азотистых соединений, основанную на.лсотен-циометрическом титровании компонентов нефти до и после их восстановления литийалюмогидридом [184]. По. этой схеме азотистые соединения делятся на группы А (сильные основания), В (слабые основания) и С (нейтральные соединения). Слабые основания в соответствии с их поведением нри восстановлении разделены на типы В (восстанавливающиеся до сильноосновных), Вг (восстанавливающиеся до нейтральных) и В3 (не восстанавливающиеся вещества) [185]. Хотя этот метод рекомендован лишь для анализа группового состава, очевидно, что аналогичное восстановление можно применять и в препаративном масштабе. [c.23]

    Н. Н. Безингер п Г. Д. Гальиерн [184] предложили детализировать групповой анализ азотистых компопентов нефти, применяя потенциометрическое титрование до и аосле восстаповления нейтральных и слабоосновных веществ алюмогидридом лития. На этой основе разработана классификация, но которой нефтяные АС делят на группы А (сильные основания), В (слабые основания) и С (нетитрующиеся или нейтральные соединения). Слабые основания, в соответствии сих поведением при восстановлении, разделены на типы Bj (восстанавливающиеся до сильноосновных), Bj (восстанавливающиеся до нейтральных) и Вд (невосстанавливающиеся вещества) [185]. [c.124]

    В растворах умеренных концентраций степень гидролиза пр11 комнатной температуре невелика. Для солей, образованных сильным основанием и сильной кислотой, она практически равна нулю для солей, образованных слабым основанием и сильной кислотой или сильным основанием и слабой, кислотой, она составляет около 1%- Так, для ЫНдС при концентрации 0,01 моль/л г = 0,01% для 0,1 н. раствора СНзСООНН4 Ог 0,5%. [c.267]

    В растворах умеренных концентраций степень гидролиза при комнатной температуре невелика для солей, образованных сильным основанием и сильной кислотой, она практически равна нулю для солей, образованных слабым основанием и сильной кислотой или сильным основанием и слабой кислотой, она составляет около 1%. Для солей, образованных слабым основанием и слабой кислотой, степень гидролиза может приближаться к 100%, а для галогенангидридов достигает 100%. Так, для НН4С1 при концентрации в 0,01 Л1 = 0,01% для 0,1н. раствора СНзСООЫН4- 0,5% для растворов (ЫН4)аСОз и (N 4)08 она равна соответственно 77 и 99%. [c.207]

    В первом случае образуются иедиссоцинроваиные молекулы слабой кислоты и гидроксид-ионы, во втором — недиссоциированные молекулы слабого основания и ионы водорода (точнее, гидроксо-иия). Следовательно, раствор соли слабой кислоты (если, конечно, основание сильнее кислоты) имеет щелочную реакцию (рН>7), а [c.179]

    Нейтрализация слабой кислоты сильным основанием (или слабого основания сильной кислотой) сопровождается одновременной диссоциацией слабого электролита с тепловым эффектом ДЯд сс. Эта теплота складывается из эндотермического эффекта диссоциации и экзотермического эффекта гидратации ионов. Сумма последних двух тепловых эффектов — в зависимости от природы электролитов — различается как знаком, так и значением. Вследствие этого теплота нейтрализации отличается от теплоты реакции образования воды из ионов (теплота нейтрализации H N едким натром равна — 10,290 кДж/моль, Н3РО4 едким кали равна — 63,850 кДж/моль). Теплоту диссоциации вычисляют по уравнению  [c.49]


Смотреть страницы где упоминается термин Основания сильные и слабые: [c.127]    [c.130]    [c.67]    [c.203]    [c.180]    [c.297]    [c.151]   
Основы биохимии Т 1,2,3 (1985) -- [ c.91 , c.92 , c.93 , c.94 , c.95 , c.96 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Основание сильные

Основания слабые

Слабов



© 2025 chem21.info Реклама на сайте