Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмогидрид лития, реакция

    Альдегиды восстанавливаются до первичных, а кетоны — до вторичных спиртов под действием ряда восстановителей, из которых наиболее широко применяются алюмогидрид лития и гидриды других металлов [214]. Два главных преимущества этих реагентов ио сравнению с другими заключаются в том, что они не восстанавливают двойные и тройные углерод-угле-родные связи и обычно содержат много активного водорода в малом количестве вещества. Так, в случае алюмогидрида лития для восстановления используются все четыре атома водорода. Эта общая реакция находит широкое применение. Алюмогидрид лития легко восстанавливает алифатические, аромати- [c.355]


    Способность реагентов дифференцированно взаимодействовать с различными функциональными группами одного соединения называют хемоселективностью. Хемоселективность также может зависеть от природы растворителя. В этом отношении показательным примером является восстановление бифункционального соединения 11-бромундецилтозилата алюмогидридом лития [реакция (5.153)] в различных растворителях [695]. [c.364]

    При гидроочистке топлив азотсодержащие соединения восстанавливаются до углеводородов и аммиака- Реакция мягкого восстановления алюмогидридом лития используется для исследования нейтральных азотсодержащих соединений. В восстановленном продукте доля азотсодержащих соединений основного характера возрастает в 1,5—5 раз, нейтральные азотсодержащие соединения восстанавливаются главным образом до третичных аминов [205]. [c.256]

    С реактивом Гриньяра С алюмогидридом лития Реакция сочетания и измерение азота 0,1 мг-экв 0,1 мг-экв 500 мкг [c.409]

    Указания на то, что и катион играет важную роль, по крайней мере в некоторых случаях, заключаются в том, что когда из алюмогидрида лития эффективно удаляли Ы+ (добавлением краун-эфира), реакция не происходила [252]. Для получения спирта комплекс 21 необходимо гидролизовать. В случае боргидрида натрия Ыа+, ио-видимому, не участвует в переходном состоянии, но кинетические данные свидетельствуют о том, что группа 0R растворителя участвует и остается связанной с бором [253]  [c.359]

    Гидридный перенос [7]. В некоторых реакциях гидрид-ион переносится от субстрата или к нему. Примером может служить восстановление эпоксидов под действием алюмогидрида лития (т. 2, реакция 10-81). Другой пример — реакция Канниццаро (реакция 19-70). К этой же категории относятся реакции, в которых гидрид-ион отщепляется под действием карбокатиона [8]  [c.262]

    Этот малоизученный гидрид (см. разд. 14.2.2.2) чувствителен к кислороду и влаге воздуха работать с ним следует столь же осторожно, как и с алюмогидридом лития. Реакции этого гидрида описаны в обзорах [8, 59]. Реагент легко восстанавливает альдегиды до спиртов и а,Р-ненасыщенные альдегиды или кетоны (при низких температурах) до аллиловых спиртов. Реагент особенно чувствителен к стерическим факторам. Так, он легко восстанавливает бензофенон при комнатной температуре в ТГФ, но не восстанавливает камфору. 1,3-Дикетоны восстанавливаются до диолов при обычной температуре [3216]. [c.352]

    Соединения. С водородом 2п, Сс1, химически не взаимодействуют. Гидриды ЭН2 получают по реакции иодидов этих металлов с алюмогидридом лития в среде диэтилового эфира  [c.596]


    Натрий в этаноле [236]. Эта методика известна под названием реакции Буво — Блана, н до открытия алюмогидрида лития она была более популярна для восстановления сложных эфиров (т. 4, реакция 19-43), чем для альдегидов и кетонов. [c.358]

    Тозилаты и другие сульфонаты можно восстановить алюмогидридом лития [896], боргидридом натрия в диполярном апротонном растворителе [897], триэтилборгидридом лития, системой BuaSnH—Nal [897а] или иодидом натрия и цинком в 1,2-диметоксиэтане [898]. Диапазон применимости этой реакции, по-видимому, такой же, как и реакции 10-77. При использовании алюмогидрида лития алкилтозилаты восстанавливаются быстрее, чем алкилиодиды и алкилбромиды, если в качестве растворителя используют эфир, но порядок реакционной способности меняется на обратный в диглиме [899]. Различие в реакционной способности настолько велико, что тозилатную группу можно восстановить ири наличии в молекуле галогена и наоборот. [c.178]

    Тетрагидрофуран применяют в качестве растворителя при проведении различных реакций и, в частности, при синтезах с помощью металлорганических соединений, восстановлении алюмогидридом лития. [c.69]

    В осстановление иминов до аминов тетрагидроборатом натрия или калия в метаноле широко применяется в органической химии множество примеров можно найти, в частности, в синтезе алкалоидов (данные суммированы в [7, р. 236]). Выход аминов при этом обычно выше, чем при восстановлении алюмогидридом лития. Реакция аминов с формальдегидом с последующим восстановлением образующегося имина (без выделения) представляет удоб-ный метод Л -метилирования [229]. В ДМСО восстановление иминов не идет, но быстро протекает в присутствии уксусной или минеральной кислоты [230]. Особенно легко восстанавливаются дигидроизохинолины, являющиеся циклическими иминами при этом получаются тетрагидроизохинолины [7]. В этом случае [231], а также при восстановлении других иминов получающиеся амины образуют довольно стабильные борановые аддукты [230]. После удаления избытка тетрагидробората рекомендуется добавить кислоту и подогреть раствор. Очень многие циклические системы, такие как р-карболины, пирролины и тетрагидррпири-дины, также легко восстанавливаются с помощью тетрагидробората натрия [7, 232]. [c.331]

    Соединения. С водоро (ом Zn, d, Hg химически ие взаимодействуют. Гидриды 3Hi получают по реакции иодидов этих металлов с алюмогидридом лития в среде диэт ового эфира  [c.564]

    В данной главе, как и в предыдущих главах, реакции классифицируются на основании типов изменения связей в органическом субстрате [9]. Это означает, что не будет обсуждаться применение конкретного окислителя или восстановителя, например бихромата в кислой среде или алюмогидрида лития (за исключением обсуждения селективности действия восстановителей, разд. 19.2). Некоторые окислители и восстановители действуют довольно специфично, атакуя субстраты только одного или нескольких типов. Другие, например бихромат в кислой среде, перманганат, алюмогидрид лития и катализаторы гидрирования, находят значительно более разнообразное применение [10]. [c.264]

    Успешно применяют для восстановления замещенных 1,2,4-трназин-3(2Н)-онов(тионов) алюмогидрид лития. Реакции проводят при кипячении в тетрагидрофуране или эфире и выделяют производные 4,5-дигидро-1,2,4-триазин-3(2Н)-онов(тионов) [189, 525, 827]. Аналогичные 4,5-дигидротриазины получают и при восстановлении боргидридом натрия триазинов LXXXIII. Реакции проводят в инертных растворителях (ТГФ) под током инертного газа (например, аргона) в течение длительного времени при комнатной температуре [189, 448, 825, 826, 844]. [c.218]

    Получение алюмогидрида лития реакцией бромистого алюминия с гидридом лития в среде эфира идет несравненно более гладко, без осложнений в виде индукционного периода и дальнейшего неуправляемого течения реакции [815, 816]. Это, несомненно, связано с лучшей растворимостью продуктов реакции — ЫВг и ЫА1Вг4 в эфире и, возможно, с более легким обменом иона брома на водород при взаимодействии бромистого алюминия с гидридом лития. То, что здесь имеет место качественное изменение промежуточных комплексов по сравнению с реакцией хлористого алюминия, следует из диаграммы кондуктометрического титрования алюмогидрида лития бромистым алюминием, отличной от таковой для хлористого алюминия [811]. [c.239]

    Наиболее предпочтительным методом получения гермаиийор-ганических гидридов КпСеН4-п является восстановление соответствующих галогенидов алюмогидридом лития. Реакция проводится [c.164]

    Прп проведении восстановления алюмогидридом лития реакция начинается при —60° С и проходит без выделения газообразных продуктов. В этом случае разложение при фракционировании еще больше, и выход стибина составляет лишь 24%. Если проводить испарение эфира не при —50° С а цри комнатной температуре, то за час происходит выделение 1 моля водорода (на моль взятого фенилдииодстибина), вероятно, за счет разложения с образованием стибинобензола  [c.271]


    В 1951—1952 гг. М. Моусерон и сотр. [139, 140] описали восстановление тетраметилтиирана и циклогексенсульфида алюмогидридом лития. Реакции гладко протекают в диэтиловом эфире, и конечные вещества об-раэуются с выходом до 85%  [c.223]

    Если для реакции с AI I3 взять большее количество LiH, то получается алюмогидрид лития  [c.339]

    Косвенный метод заключается в превращении спиртов в сульфонаты и восстановлении этих соединений (реакция 10-78). Эти две последовательные реакции можно провести, не выделяя сульфонат, если спирт обработать системой пиридин — 80з в тетрагидрофуране и затем добавить алюмогидрид лития [911]. Другой метод косвенного восстановления [912], который можно провести в одну стадию, включает обработку спирта (первичного, вторичного или бензильного) иодидом натрия, цинком и триметилхлоросиланом [913]. При этом спирт сначала превращается в иодид, который и восстанавливается. В случае а-гидроксикетонов гидроксильную группу можно восстановить косвенным методом, не затрагивающим карбонильную группу для этого субстрат последовательно обрабатывают тозилатом [c.179]

    R4P+. Для этой цели использовались и другие восстановители, например триэтилборгидрид лития (который предпочтительно отщепляет метильные группы) [946] и натрий в жидком аммиаке. Восстановление четвертичных солей амальгамой натрия в воде известно как реакция Эмде. Однако этот реагент неприменим для расщепления аммониевых солей, все четыре заместителя которых представляют собой насыш,енные алкильные группы. Некоторые третичные амины расщепляются при взаимодействии с алюмогидридом лития [947]. Естественно, азири- [c.182]

    Эта реакция проводилась под действием многих реагентов, чаще всего используется цинк, магний и иодид-ион 327а], реже — фениллитий, фенилгидразин, хлорид хрома (И), нафталин-натрий [328], N3—КНз [329], ЫагЗ в ДМФ [330] и алюмогидрид лития [331]. Реация дает хорошие выходы, но с синтетической точки зрения она не слишком выгодна, так как исходные выг(-дигалогениды приходится получать путем присоединения галогена к двойной связи (т. 3, реакция 15-27). Однако ее преимущество состоит в том, что положение двойной связи в продукте заранее точно известно. Например, из соединений типа X—С—СХг—С—X или X—С—СХ = С можно получить аллены, которые труднодоступны другими методами [332]. Путем 1,4-элиминирования были получены кумулены  [c.70]

    Подобно реакции 17-50, некоторые циклические сульфоны при нагревании или при фотолизе подвергаются экструзии 50г, давая продукты со сжатием цикла [456]. Примером служит показанное выше получение нафто[Ь]циклобутена [457]. Другой реакцией пятичленные сульфоны можно превратить в цикло-бутены для этой цели исходные соединения обрабатывают бу-тиллитием, а затем алюмогидридом лития [458], например  [c.87]

    Необходимо отметить, что приведенное определение окисления не имеет никакого отношения к механизму. Так, превращения бромометана в метанол под действием КОН (т. 2, реакция 10-1) и в метан под действием алюмогидрида лития (т. 2, реакция 10-77) идут по одному и тому же механизму 8к2, но одна из этих реакций — восстановление, а другая — нет. Нецелесообразно рассматривать в этой главе механизмы окисления и восстановления в широких категориях, как это делалось для реакций, обсуждавшихся в гл. 10—18 [2]. Основная причина заключается в следующем механизмы этих реакций весьма разнообразны, что в свою очередь обусловлено значительными различиями в изменении характера связей. Например, в т. 3, гл. 15, изменение связей для всех реакций имеет вид С = С->-—С—С—V, и все такие реакции протекают по относительно небольшому числу механизмов. Но при окислительном и восстановительном изменении связей они значительно более разнообразны. Другая причина заключается в том, что механизм конкретной реакции окисления или восстановления может сильно изменяться в зависимости от природы окислителя или восстановителя. Часто механизм реакций оказывается тщательно изученным только для одного или нескольких из используемых для данного превращения реагентов. [c.261]

    При обработке соединений, содержащих двойные связи, озоном (обычно при низких температурах) получаются вещества, называемые озонидами (11), которые можно выделить. Многие из них взрывоопасны, поэтому их чаще разлагают действием цинка в уксусной кислоте или путем каталитического гидрирования, что приводит к 2 молям альдегида или 2 молям кетона или к 1 молю кетона и 1 молю альдегида в зависимости от природы заместителей у двойной связи в олефине [148]. Разложение озонидов И можно осуществить также с помощью многих других восстановителей, среди которых триметилфосфит [149], тиомочевина [150] и диметилсульфид [151]. Однако озониды можно также либо окислять действием кислорода, перкислот или Н2О2, в результате чего получаются кетоны и (или) карбоновые кислоты, либо восстанавливать действием алюмогидрида лития, боргидрида натрия, ВНз или путем каталитического гидрирования избытком Нг, что дает 2 моля спирта [152]. Озониды можно также обрабатывать либо аммиаком и водородом в присутствии катализатора, что приводит к соответствующим аминам [153], либо спиртом и безводным НС1, в результате чего получаются сложные эфиры карбоновых кислот [154. Следовательно, озонолиз — синтетически важная реакция. В прошлом эта реакция была основой ценного метода установления положения двойной связи в неизвестных соединениях, хотя с распространением инструментальных методов установления структуры этот метод применяется все реже. [c.280]


Смотреть страницы где упоминается термин Алюмогидрид лития, реакция: [c.233]    [c.115]    [c.169]    [c.238]    [c.118]    [c.130]    [c.142]    [c.176]    [c.180]    [c.181]    [c.185]    [c.197]    [c.218]    [c.388]    [c.168]    [c.178]    [c.178]    [c.229]    [c.356]    [c.356]    [c.357]    [c.360]    [c.67]   
Алюмогидрид лития и его применение в органической химии (1957) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Литий реакции

Лития алюмогидрид



© 2025 chem21.info Реклама на сайте