Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий бромистый реакция с хлористым водородо

    Для проведения реакции суспензию безводной однохлористой меди и порошкообразного хлористого алюминия в сухом толуоле механически перемешивают и через зту смесь пропускают в течение нескольких часов ток сухого хлористого водорода и окиси углерода. Реакционную смесь разлагают льдом и затем перегоняют с водяным паром полученный rt-толуиловый альдегид отделяют от непрореагировавшего толуола фракционной перегонкой. Ориентация и границы применения реакции Гаттермана—Коха приблизительно те же, что и при синтезе кетонов по Фриделю—Крафтсу, но выходы ниже. В обычных условиях этого метода (если хлористый алюминий не заменен бромистым алюминием) бензол в реакцию не вступает и даже применяется в качестве растворителя при формилировании других углеводородов. [c.375]


    Метилциклогексан при нагревании с бромистым или хлористым алюминием практически не изменяется [18]. При помощи метода меченых атомов с применением метилциклогексана, содержащего С1 -метильную группу, удалось показать, что изомеризация идет и что после реакции. 31% метилциклогексана содержал радиоактивный углерод в кольце [58]. Реакция проводилась при 25° в течение 21 часа, в качестве катализатора были взяты бромистый алюминий и бромистый водород, а в качестве инициатора цепи — вто/ -бутилбромид. В отсутствии инициатора в кольце оказалось только около 1% радиоактивного углерода. [c.46]

    Присоединение хлористого водорода по двойной связи, как отмечалось выше, происходит труднее, чем присоединение бромистого и иодистого водорода. Для ускорения реакции применяют нагревание и катализаторы — соли железа, кобальта, никеля или алюминия. В некоторых случаях процесс ведут под давлением. [c.67]

    В противоположность хлористому галлию и бромистому алюминию хлористый алюминий, как было замечено, лишь слегка растворим в хлористом метило и в хлористом этиле данных об образовании комплексов не имеется [61]. Патентная литература содержит многочисленные ссылки на использование растворов хлористого алюмнния в хлористом метиле или хлористом этиле для полимеризации олефинов, нрисоединения хлористого водорода к олефинам и т. д. Видимая растворимость хлористого алюминия в этих случаях зависит либо от наличия примесей, либо является следствием вторичных реакций, включая и частичный распад алкилхлоридов. [c.434]

    Более ранние исследования показали, что хлористый алюминий, обычно применяемый вместе с хлористым водородом, является эффективным катализатором изомеризации, что привело к важным применениям этого катализатора в промышленности. Он применялся не только сам по себе, но и на носителях, а также в виде комплексов, не смешивающихся с углеводородом, часто называемых осадком хлористого алюминия. Последующая работа с тщательно очищенными веществами показала, что инициаторы цепей, обычно присутствующие в определенных концентрациях в технических исходных материалах, необходимы для осуществления реакции изомеризации. Бромистый алюминий с бромистым водородом по своему действию напоминает хлористый алюминий с хлористым водородом. [c.14]

    Комплексы ароматических углеводородов с катализаторами реакции Фриделя—Крафтса. В отсутствии хлористого водорода хлористый алюминий не растворяется и не взаимодействует каким-либо другим образом с ароматическими углеводородами [56]. Кроме того, бромистый алюминий легко растворяется в ароматических углеводородах, и имеется значительное количество данных, подтверждающих существование комплексов определенного типа. Однако литературные данные разноречивы и не позволяют сделать однозначный вывод о существовании комплекса [112, 223, 252, 253, 254, 300]. [c.431]


    Из галоидопроизводных бензола только один хлорбензол может быть превращен в п-хлорбензальдегид реакцией Гаттерман 1—Коха. Формили-рование бром- и иодбензола дает отрицательные результаты. Сам бензол формилируется окисью углерода и хлористым водородом в присутствии хлористого алюминия в очень незначительной степени, поэтому при фор-милировании гомологов бензола в качестве растворителя часто применяют бензол. Бензальдегид можно получить с хорошим выходом при применении в качестве катализатора бромистого алюминия вместо хлористого алюминия. [c.298]

    В колбу вливают смесь 20 г сухого чистого четыреххлористого углерода и 50 г бензола. К этой смеси понемногу прибавляют 15 г хлористого алюминия. Вначале колбу охлаждают и не дают реакции идти слишком бурно. Выделяющийся хлористый водород поглощают так же, как бромистый водород при получении бромбензола (см. с. 112). [c.130]

    Данные, приведенные в табл. 8, показывают, что изомеризация к-бутана протекает в присутствии хлористого алюмииия и хлористого водорода в том случае, если концентрация последнего или температура реакции достаточно высоки. Изомеризация проводится одним хлористым алюминием при 150°. Далее, повышение концентрации хлористого водорода от 3 до 7% мол. значительно увеличивает степень крекинга, что сопровождается большим расходом хлористого водорода. По-видимому, карбоний-ионы образуются в этих условиях под прямым воздействием углеводорода на катализатор. Не исключается предварительная диссоциация хлористого водорода на атомы подобно тому, как это постулировалось для бромистого водорода, однако она мало вероятна из-за большой термической устойчивости хлористого водорода. [c.66]

    Еще в копне прошлого века было замечено, что бромбензол в отличие от хлорбензола при нагревании с хлористым алюминием выше 100° частично диспропорционируется на бензол и дибромбензолы [38, 42, 43]. Превращение бромбензола ускоряется образующимися во время реакции хлористым и бромистым водородом. Существенное влияние галоидоводорода на процесс диспропорционирования отмечается и в последующих [c.63]

    Собранные в табл. 7.1 примеры присоединения галогеноводородных кислот относятся к реакциям, которые проводились в присутствии электрофильного катализатора. Такой катализатор (кислоты Льюиса тригалогениды железа или алюминия) необходим для активации мало реакционноспособного хлористого водорода. В случае бромистого водорода катализатор помогает также подавить возможную в этом случае радикальную реакцию (см. ниже). [c.450]

    Вопреки тому, что большинство исследователей утверждает необходимость полного отсутствия влаги в реакциях с хлористыл алюминием, было, однако, доказано,что присутствие следов влаги ускоряет, а не заглушает реакцию. Это особенно проявляется в тех реакциях, в которых происходит присоединение к олефиновой двойной связи. В этих случаях иногда бывает полезным в смысле возбуждения реакции наличие хлористого водорода или добавка небольшого количества воды, что в результате ведет к образованию хлористого же водорода вследствие реакции между водой и хлористым алюминием. Ускоряющее действие влаги также было подтверждено при изучении крекинга парафиновых углеводородов. Небольшие количества воды могут содействовать реакции еще тем, что они способствуют лучшей растворимости хлористого алюминия в растворителях и тем самым обеспечивают более действенное соприкосновение катализатора с реагирующими веществами. В то время как сухой пентан в парообразном или жидком состоянии не подвергается никакому разлоя ению в присутствии свежевозогнанного хлористого алюминия, добавка сухого бромистого или хлористого водорода, воды или водного хлористого алюминия или хлористого алкила немедленно вызывает реакцию [1]. [c.882]

    Ранние исследования. Исследования более раннего периода показали, что изомеризация м-бутаяа в изобутан и обратная реакция протекают в присутствии катализаторов, содержаш,их хлористый или бромистый алюминий. Последний вследствие большой растворимости в углеводородах и более высокой активности вызывает изомеризацию уже при комнатной температуре. Вскоре было установлено, что хлористый алюминий активен только в присутствии хлористого водорода. [c.17]

    Реакция хлористого алюминия с водой до некоторой степени сходна с реакцией бромистого алюминия. Так, из 1 моля хлористого алюминия 1 молем воды было выделено больше хлористого водорода, чем 2 молями [81]. Катализатор, полученный из хлористого алюминия действием на него воды, был менее активен, чем катализатор из бромистого алюминия, и поэтому опыты по изомеризации проводилисьпри80—100. В отличие от хлористого алюминия катализатор, полученный действием воды на хлористый алюминий, не требует присутствия олефинов или хлористого водорода для промотирования реакции изомеризации к-бутана. [c.20]

    Бромирование циклопропана было предметом исследований многих авторов, особенно Густавсона. В присутствии солнечного света происходит очень быстрое соединение брома с циклопропаном (находящихся в сухом или влажном состоя-ши) с образованием в качестве единственного продукта 1,3-дибр 0 мпропана Бромирование при комнатной тем пературе и в темноте совершенно сухого циклопропана протекает очень медленно, но реакция заметно ускоряется присутствием влаги или некоторых переносчиков брома к числу последних относятся галоидные соединения алюминия, хлорное >келеэо, хлористый цинк элементарный иод. В присутствии бромистого водорода, который может также действовать как катализатор бромирования, в результате реакции получаются 1,3- и 1,2-дибромпро-паны и продукты их дальнейшего бромирования, а также некоторое количество пропилбромида при применении в качестве катализаторов бромистого алюминия или хлорного железа основным нродуктом является 1,2-дибромпропан Отсюда видно, что главной реакцией, происходящей ери действии брома на циклопропан, является расщепление кольца из трех атомов углерода с после-, дующим бром ированием временно образующейся ненасыщенной системы. [c.810]


    Реакция замещения водорода на галоид сильно ускоряется при нагревании, под действием света (особенно ультрафиолетовых лучей) и в присутствии катализаторов в качестве последних применяют иод, железо, хлористый или бромистый алюминий и др. Прямое замещение водорода на иод может быть осуществлено лишь в том случае, если приняты меры к удалению образующейся при реакции иодистоводородной кислоты, так как последняя способна восстанавливать получаемое галоидопроизводное. [c.56]

    Ц и к л о г е к с а н ы. При нагревании метилциклогексана с бромистым или хлористым алюминием превращения его практически не происходит, так как в равновесных условиях он является основным продуктом изомеризации. Однако в тех случаях, когда метильная группа содержит радиоактивный углерод , образуется метилциклогексан, содержащий G в кольце [92]. При 25° С и продолжительности контакта 21 час. 31% радиоактивного углерода перемещается в кольцо. В этих опытах в качестве катализатора применяли бромистый алюминий — бромистый водород, промотированный етор-бутилбромидом. В отсутствие етор-бутилбромида в кольцо перемещается только 2% радиоактивного углерода. Такая реакция изомеризации не может протекать по механизму карбоний-иона без промежуточного образования ионов с меньшим или большим числом углеродных атомов в кольце. Поскольку вероятность образования трех-, четырех- или семичленных циклических промежуточных соединений ничтожно мала, очевидно, что при этой реакции должны получаться циклопентильпые карбоний-ионы. [c.94]

    В качестве кислых реагентов, в присутствии которых протекает синтез симм-тршзшоъ, часто используются различные протонные кислоты (хлористый водород, серная кислота, хлорсульфоновая кислота и др.)2 Тримеризация трихлорацетонитрила проводится при совместном действии хлористого алюминия и хлористого водорода бромистого алюминия и бромистого водорода 2 . 2,4 -Трис-(а,а-дихлорэтил)-1,3,5-триазин был получен при хлорировании пропионитрила, 2,4,6-трис-(дибромме-тил)-1,3,5-триазин — при взаимодействии эквимольных количеств брома и ацетонитрила в присутствии красного фосфора и карбоната кальция. Образование триазинов в этих условиях объясняется, очевидно, действием хлористого и бромистого водорода, выделяющихся в ходе реакций. [c.375]

    Гомогеннокаталитическая изомеризация алкенов. Активность протонных кислот в миграции двойной связи во внутрь углеводородной цепи стала известна после опытов А.М. Бутлерова с диизобутиленом. Такими катализаторами являются безводные серная кислота, хлористый, бромистый и фтористый водород. Гомогенными катализаторами этих реакций являются растворы кислот Льюиса галогениды алюминия, бора, цинка. Мшрация двойной связи наблюдается в присутствии солей алюминия, хрома, железа и кобальта. [c.896]

    По данным Хелдмана [1—3] и других авторов [4], чис1ый сухой бромистый и хлористый алюминий совершенно инертны по отношению к парафиновым углеводородам добавление га-лоидоводорода или вещества, способного образовывать галоидоводород при реакции с галоидными соединениями алюминия, приводит к каталитически активной системе. В мягких условиях низшие парафины только изомернзуются. Первичной реакцией является всегда обмен метильной группы с атомом водорода, находящимся у второго (иногда третьего) от метильной группы атома углерода. [c.572]

    Каталитическое алкилирование насыщенных углеводородов олефинами, впервые осуществленное Ипатьевым, Паинсом, Комаревским и Гроссе, привело к созданию процесса получения авиационного бензина с октановым числом 100 [715, 716]. Хотя эти реакции и приобрели большое значение в промышленности, однако мы ограничимся здесь лишь упоминанием о них, поскольку они не представляют большого интереса как препаративный метод в органической химии. Укажем лишь, что из парафиновых углеводородов алкилированию олефинами практически подвергаются только изопарафины, главным образом изобутан. Нафтеновые углеводороды и в незьшчительной степени нормальные парафиновые углеводороды такл<е алкилируются олефинами, однако их алкилирование сопровождается слиптком большим числом побочных реакций. К числу применяемых катализаторов реакций алкилирования относятся хлористый алюминий, серная кислота, фтористый водород, фтористый бор и бромистый алюминий. [c.196]

    Облэд и Горин [135] в 1946 г. изучали влияние кислорода и других промоторов на катализируемую бромистым алюминием реакцию изомеризации н-бутана. Неустойчивый характер реакции в ранних исследованиях послужил причиной для утверждения, что некоторые примеси к катализаторам, действующие как промоторы, потребляются в ходе реакции. Таким веществом считался кислород, и его поведение в условиях реакции изучалось наиболее детально. Было найдено, что исследуемая реакция — первого порядка относительно взятого для реакции углеводорода нри дайной температуре, и ее течение зависит от концентрации бромистого алюминия, концентрации кислорода и размера поверхности. Было высказано предположение, что новерхность необходима для обеспечения полярной среды, в которой протекает реакция. Помимо кислорода, изучались и другие промоторы, включая воду, бром, водород, двуокись углерода, хлористый водород, бромистый водород, бромистый этил. Обсуждался также механизм реакции с учетом возможности образования бромистого водорода и бромистых алкилов под действием кислорода и дальнейшей реакции с получением [(СНз)з С ] и (АШгГ). [c.343]

    Реакции обмена галоида изучались также без применения радиоактивных частиц. В 1944 г. Коршак и Колесников [1011 провели реакцию между бромистым алюминием и С2Н5СО2С1. Выделившиеся в ходе реакции газы содержали 82% бромистого водорода и 18% хлористого водорода. Дельволль [32] в течение ряда лет изучал реакции галоидного обмена между галоидными соединениями германия, олова, титана и кремния. Найдено, например, что ОеС1 и ОеВг4 обмениваются галоидом при 20—60° и что этот обмен катализируется следами хлористого водорода или бромистого водорода. [c.348]

    В отсутствие хлористого водорода изомеризация 1-хлорнафталина на окиси алюминия не идет [56]. Хлористый водород может быть заменен бромистым, однако в этом случае изомеризация сопровождается обменом атомов хлора на бром, в результате чего в продукте реакции наряду с 2-хлорнафталином появляются оба изомерных монобромнафталина [57]. Обмен при 350° происходит почти полностью, если количество бромистого водорода составляет 5—6 молей на 1 моль хлорнафталина. Побочно образуются нафталин и дибромнафталины (главным образом 2,6-изомер). [c.66]

    Характерно, что деметилирование рассмотренных выше бромзаме-ш,енных метокси- и диметоксибензойных кислот при нагревании с хлористым водородом в уксусной кислоте или с хлористым алюминием в подходящем растворителе протекает нормально 65, 66]. Специфичность действия бромистого водорода связана, по-видимому, с его восстановительными свойствами, благоприятствующими отщеплению брома от молекулы бромпроизводного, и может поэтому рассматриваться как указание на связь изомерных превращений бромзамещенных оксибензойных кислот с обратимостью реакции бромирования. [c.69]

    Другими комплексами, которые могут быть рассмотрены в реакциях ароматического замещения, являются первоначально упомянутые а-ком-плексы, имеющие структуру II. Проблема двух типов комплексов в целом была разработана Брауном с сотрудниками, важный вклад которого заключался в ясной оценке роли комплексов в процессе замещения [19]. Выводы Брауна с сотрудниками были основаны на отличии комплексов ароматических соединений с галогеноводородами, полученных в отсутствие и в присутствии галогенидов алюминия. Продолжая ранние исследования по растворимости ароматических углеводородов во фтористом водороде, Браун и Брэди [20] изучили их основные свойства, с авнивая растворимость хлористого водорода примерно в 25 различных углеводородах при —78,5°, в том числе в гептане и толуоле. Данные подтвердили образование комплексов 1 1 между АгН и хлористым водородом (или бромистым водородом [21]) были также вычислены константы равновесия их образования. К настоящему времени образование комплексов 1 1 было подтверждено анализом кривых температур замерзания комплексов АгН-H l [22], определением их температур плавления [23] и изменением частот в инфракрасных спектрах [24. Как сообщалось [19], эти комплексы бесцветны, не проводят электрического тока и при замене хлористого водорода на хлористый дейтерий ароматический водород не обменивается на дейтерий. Эти физические свойства находятся в согласии со структурой, в которой ароматическое соединение относительно неизменено. Способность к комплексообразованию хорошо коррелирует с основностью ароматического соединения, т. е. метильные группы в бензольном кольце способствуют комплексообразованию, а галогены препятствуют ему. В этом отношении эти комплексы напоминают другие я-комплексы, и Браун с Брэди пришли к выводу, что их лучше представлять как я-комплексы типа VI Г. Дью- [c.450]

    Октановая характеристика -пентановой и н-гексановой фракций, полученных четкой ректификацией прямогонных фракций, может быть значительно улучшена путем каталитической изомеризации. Процесс проводится в жидкой фазе в присутствии хлористого или бромистого алюминия как катализаторов (17,23—26). В качестве промотора добавляется безводный хлористый водород для замедления разлол<ения катализатора и подавления реакций крекинга вводится водорд в количествах, обеспечивающих поддержание парциального давления водорода в пределах 4—5 ат. Слишком большое давление водорода может привести к подавлению реакции изомеризации. Хотя каждый процесс обладает специфическими чертами, все они характеризуются высокой степенью изомеризации за одип проход. В наиболее совершенных процессах для повышения выхода изопарафинов применяется рециркуляция [17]. [c.235]

    Смесь окиси углерода и хлористого водорода можно получить действием хлорсульфоновой кислоты на муравьиную. Необходимо введение в смесь добавочного катализатора (хлористая медь СиС1), что дает возможность технически применить этот метод для получения альдегидов (Гаттерман и сотр.). Реакцию ведут при перемешивании при температуре 20—50°. Для получения бензальдегида А. И. Реформатский заменил не растворимый в бензоле хлористый алюминий растворимой бромистой солью, оставив прежние условия. Выход бензальдегида достигает 90%. [c.176]


Смотреть страницы где упоминается термин Алюминий бромистый реакция с хлористым водородо: [c.347]    [c.194]    [c.19]    [c.496]    [c.166]    [c.434]    [c.476]    [c.366]    [c.209]    [c.209]    [c.352]    [c.383]    [c.451]    [c.159]    [c.291]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.870 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий бромистый

Алюминий бромистый и хлористый

Алюминий реакции

Бромистый водород

Хлористый водород

Хлористый и бромистый водород



© 2025 chem21.info Реклама на сайте