Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматическая структура, качественные реакции

    Пиромеллитовый диангидрид (ПМДА) получают в промышленных масштабах либо парофазным окислением, причем образуются 11римеси ангидридной структуры, либо жидкофазным окислением ароматических углеводородов. В последнем случае возможны примеси кислотного типа. При спектральном определении.содержания ПМДА в продуктах парофазного окисления возможна весьма заметная ошибка за счет близкого расположения полос поглош,ения ПМДА и фталевого ангидрида П]. А хроматографическое определение в виде метиловых эфиров не позволяет раздельно определять ПМДА и соответствующую кислоту [2]. Следовательно, спектральный метод не может служить качественным методом определения ПМДА в присутствии больших количеств фталевого ангидрида, а хроматографический — в присутствии пиромеллитовой кислоты. В связи с этим представляет интерес качественная реакция, которая позволила бы обнаруживать ПМДА в присутствии вышеперечисленных примесей. По нашему мнению, такой реакцией может служить образование л-комплекса с ароматическими углеводородами. [c.139]


    Разумеется, эта качественная реакция наблюдается только в том случае, если пара-положение в ароматическом ядре свободно. В этом случае также следует сделать пробу на ароматическую структуру. [c.227]

    Если соединение имеет ароматическую структуру и кроме функциональных групп содержит такие заместители, как галоген- и нитрогруппа, то помимо определения констант самого идентифицируемого вещества и его функциональных производных рекомендуется провести некоторые качественные реакции. [c.240]

    Ввиду сложности И ненадежности изложенных выше методов нуклеофильная реакционная способность обычно рассматривается либо качественно, либо с использованием эмпирических соотношений свободных энергий [9]. Однако если в реакции участвуют сопряженные системы, то можно предположить конкретную структуру для переходного состояния, например промежуточный продукт присоединения, и изменение энергии сопряжения связать с реакционной способностью [10]. Этот метод широко использовался для реакций ароматического электрофильного замещения, где нуклеофильным реагентом является углеводород с сопряженными связями. Сделав некоторые дополнительные допущения, его можно распространить также на реакции ароматических аминов, фенолов и подобных систем при объяснении электронного распределения вокруг гетероатомов. [c.117]

    Эти качественные реакции основаны на возникновении окраски при взаимодействии аминов с хлорной известью. Основной реактив — насыщенный водный раствор хлорной извести. Учащиеся помещают в пробирку несколько капель анализируемого ароматического амина, добавляют 0,5 мл раствора хлорной извести и наблюдают окрашивание раствора. Цвет раствора зависит от структуры ароматического амина. Если после добавления раствора хлорной извести прибавить к раствору несколько капель серной кислоты, то возникает другая окраска, также характерная для данного ароматического амина (табл. 8). [c.183]

    Электрофильное замешение в ароматических соединениях осуществляется как двухстадийный процесс первоначально происходит присоединение электрофильной частицы (Х+), а затем элиминирование (Н" ). Первая из этих стадий протекает медленнее и определяет скорость реакции. Качественные предсказания относительных скоростей замещения в различных положениях ароматического кольца можно сделать на основании рассмотрения структуры образующихся при присоединении электрофильных частиц ст-комплексов (интермедиатов Уэланда) с позиций оценки их относительной стабильности, которая отражает относительные энергии приводящих к ним переходных состояний. [c.94]


    Точка зрения, что химические изменения, происходящие под действием радиации, влекут за собой образование свободных радикалов, подтверждается уже рассмотренными исследованиями по полимеризации. В табл. 34 приводятся выходы свободных радикалов, полученных при радиолизе небольших молекул. Делая определенные допущения в отношении связей, рвущихся с образованием свободных радикалов, основанные на строении рассматриваемых молекул, и зная поглощенную энергию, можно вычислить процентный энергетический выход реакции (см. последнюю колонку табл. 34). Очевидно, что для установления характера радиолиза приведенных в табл. 34 соединений важны по крайней мере два фактора атомный состав и структура полимера. Несомненно, что наличие таких электроотрицательных элементов, как галоиды и кислород, способствует разрушению, тогда как присутствие ненасыщенных связей, особенно в группах с сопряженными двойными связями и ароматических группах, стабилизирует молекулы. Эти результаты для небольших молекул, по крайней мере качественно, можно применить к структуре полимеров. [c.293]

    Активность веществ, вступающих в реакцию окисления, зависит не только от физических свойств, по и от химической структуры вещества. Попытку, хотя бы качественно оценить ее влияние на горючесть вещества, связывают в первую очередь с его термостойкостью. При этом считают, что чем более термостойким является вещество, тем оно менее горюче. Действительно, если под термостойкостью понимать предельную температуру, которую может выдерживать вещество без химического изменения, т. е. его химическую устойчивость, то некоторые термостойкие при температуре выше 500 °С органические вещества можно считать трудногорючими или негорючими в атмосфере воздуха. В соответствии с данными исследований термостойкости [81], к указанной группе по горючести можно отнести, например, сложные соединения, содержащие ароматические карбо- и гетероциклы  [c.86]

    За исключением отдельных газофазных процессов реакции ароматических соединений проводятся в жидкой фазе, в среде растворителя, роль которого может играть одно из реагирующих веществ. Молекулы растворителя взаимодействуют с реагирующими частицами на всех этапах реакции, образуя вокруг них сольватные оболочки, которые могут изменять свободную энергию и электронную структуру частиц и, как следствие, скорость, механизм и направление реакции. Фактически в реакции участвуют не изолированные частицы, которые изображают при написании химических уравнений, а качественно отличные от них сольватные-комплексы. Без учета влияния среды правильное понимание течения реакций невозможно. [c.55]

    Выделенные смеси азотистых соединений в основном состояли из производных пиридина и небольшого количества (в смолах крекинг-керосина) производных хинолина. Качественными реакциями установлены следы ароматических аминов. Фракции азотистых соединений были загрязнены некоторым количеством кислородны. соединений, содержание которых снижалось при хроматографической очистке. Обращают на себя внимание йодные числа, свидетельствующие о ненасыщенности боковых цепей азотистых гетероциклов. Значительными йодными числами характеризуются фракции азотистых соединений крекинг-керосина. Наличием ненасыщенных связей в структуре некоторых азотистых соединений в известной степени обусловлено ухудшение эксплуатационных свойств нефтепродуктов. Этим, по-види.мому, объясняется, что в патентной литературе реко- [c.94]

    Природа растворителя влияет не только на состояние веществ в растворе, но и на стабильность активированных комплексов, ЧТО также изменяет скорость реакции. Влияние сольватации переходных состояний прослеживается в реакциях между нейтральными полярными молекулами, сольватация которых меньше влияет на реакционную способность, чем в реакциях с участием ионов. Согласно качественной теории влияния растворителей Хьеоз а и Ингольда [72, с. 379], скорость реакции между незаряженными молекулами, протекающей через пере--ходное состояние с частичным разделением зарядов, возрастает с увеличением полярности среды. В соответствии с этим правилом реакции ароматического замещения, которые протераюг через переходное состояние, подобное по структуре биполярным 0-комплексам, ускоряются с увеличением полярности растворителя. Однако влияние растворителей зависит не только от их полярности. Наиболее обстоятельно это показано на примере )еакции ароматических галогенпроизводных с аминами [239], Лри близкой полярности растворители тем больше ускоряют реакцию с пиперидином (30)->(33), чем больше их основность диоКсан больше, чем бензол, пиридин больше, ем нитробензол,. и т.д. Это объясняют специфической сольватацией путем образования водородной связи в а-комплексе (31), облегчающей отрыв протона от атома азота (общий основный катализ). В значительной степени влияние основного растворителя зависит от природы замещаемого атома. Так, скорости реакции с пиперидином при 50 °С в таких растворителях, как бензол, этилацетат, метилэтилкетон, ацетонитрил, диметилформамид и диметилсульфоксид, составляют для п-нитрофторбензола соответственно 1, 11, 59, 300, 1950, 7200, а для /г-нитрохлорбен-зола они равны соответственно 1, 2, 15, 34, 142, 412 при отношении скоростей обмена атомов фтора и хлора в бензоле, равном 24 1 [240]. Большее влияние основных полярных растворителей (В) на скорость замещения атома фтора объясняют образованием более прочных водородных связей с сопряженными кислотами (ВН ) на стадии отрыва галогенид-аниона [формула (32)] (общий кислотный анализ).-Для растворителей (1), обладающих как основным, так и кислотным характером (например пиперидин), допускается возможность одновременного образо- [c.81]


    Эти три допущения, как замечают Дьюар и Лонгет-Хиггинс. имеют очень незначительное теоретическое обоснование. В самом деле, как показали Додель и Пюльман (стр. 258), возбужденные структуры для высококонденсированных ароматических углеводородов могут иметь большее значение (в разложении вариационной функции), чем невозбужденные. Но даже, если принять, что такие структуры играют главную роль, отсюда еще не следует, что стабильность молекулы определяется просто числом этих структур (а что в теории резонанса рассуждали именно так при определении как межато.мных расстояний, так и реакционной способности, видно из примеров на стр. 223 и 246). Следует подчеркнуть,— пишут Дьюар п Лонгет-Хиггинс, что эта критика относится не к самому методу валентных связей, а только к трем определенны.м допущениям, характеризующи.м теорию резонанса [там же, стр. 483]. Вместе с t im, по их мнению, теория резонанса работает хорошо , но, принимая во внимание сказанное выше, трудно понять почему. Авторы находят объяснение в принципе соответствия между этой теорией и методом молекулярных орбит. Только последний метод, как это подчеркнуто в другой работе Лонгет-Хиггинса [5], способен приводить не только к качественным заключениям, но и к количественны.м выводам об относительном поведении в реакциях замещения различных мест в сложных системах. [c.404]

    В последнее время был разработан качественный и полуколиче-ственный подход к интерпретации масс-спектров. Полагая известными структуры исходных и осколочных ионов, Джонстон и Уорд [351] применили правила Вудварда — Гофмана [352] для перици-клических реакций к большому числу ароматических соединений и нашли некоторые доказательства фрагментации через электронновозбужденные состояния. Хотя в этой работе формально утверждалось, что масс-спектрометрические реакции циклизации похожи на фотохимические циклизации аналогичных систем, попыток установить электронное состояние исходного иона не предпринималось. [c.106]

    Наиболее важными из этих вторичных реакций являются реакции, характерные для двойной связи, имеющейся или в исходном углеводороде или образующейся в результате крекинга. При исследовании вторичных реакций олефинов при каталитическом крекинге изучались качественная и количественная изомеризация олефинов, насыщение олефинов посредством перераспределения водорода, эффект насыщения при различных температурах, объемных скоростях и разбавителях, влияние структуры олефинов на перераспределение водорода, влияние декалина и тетралина как доноров водорода, сравнение перераспределения водорода и каталитического гидрирования, получение полимеров и ароматических углеводородов из олефинов. [c.101]


Смотреть страницы где упоминается термин Ароматическая структура, качественные реакции: [c.268]    [c.27]    [c.321]    [c.95]    [c.12]    [c.236]    [c.321]    [c.154]   
Лабораторные работы в органическом практикуме (1974) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции качественные

Реакции структура



© 2024 chem21.info Реклама на сайте