Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопряжение из энергии связей

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Вообще по мере того, как число сопряженных двойных связей увеличивается, электронные переходы требуют меньшей энергии. Это означает, что поглощение сдвигается в сторону низших энергий или в красную часть спектра. В сложных молекулах, содержащих длинные сопряженные системы, поглощение может настолько сдвигаться в сторону более длинных волн, что оно наблюдается в видимой области и вещество бывает окрашено. Это иллюстрируется данными по ряду молекул, представляющих собой линейно конденсированные ароматические системы, приведенные в табл. 1. [c.278]

    С—С — 1,48 А [18]. Поскольку для простой связи С—С, не соседствующей с ненасыщенной группой, типичное межатомное расстояние равно 1,54 А (разд. 1.10), укорочение простой связи в бутадиене может служить доказательством резонанса. Однако подобное укорочение связи можно также объяснить изменениями в гибридизации (разд. 1.11). Предлагались и другие объяснения этого явления [19]. Энергия резонанса бутадиена, вычисленная по теплотам сгорания или гидрирования, составляет лишь около 4 ккал/моль такая величина вряд ли обусловлена только резонансом. Расчет по теплотам атомизации дает величины энергии резонанса 4,6 ккал/моль для 1,3-пента-диена и —0,2 ккал/моль для 1,4-пентадиена. Каждое из этих соединений имеет две двойные связи С = С, две простые связи С—С и восемь связей С—Н и, казалось бы, позволяет сравнить сопряженную и несопряженную системы тем не менее в строгом смысле эти соединения мало сравнимы. В цис-1,3-пентадиене имеются три связи зр -С—Н и пять связей —Н, а в 1,4-пентадиене — две и шесть соответствующих связей. Кроме того, в 1,4-диене обе простые связи С—С относятся к sp —5р -типу, а в 1,3-диене только одна такая связь, а другая связь С—С принадлежит к 5p —хр -типу. Поэтому вполне возможно, что некоторая доля и без того небольшой величины 4 ккал/моль является не энергией резонанса, а разностью энергий связей, имеющих различную гибридизацию [20]. [c.53]

    Катион-радикал бензола С Н имеет всего пять я-электронов, т.е. валентную конфигурацию (Я1)" (Я2)" (Яз) . Система сопряженных двойных связей частично разрушается, и длина волны поглощаемого света должна уменьшиться (энергия поглощаемого света возрастает). [c.526]

    В мембранных системах с возрастающей энергией связи повышение селективности сопровождается снижением проницаемости и, следовательно, производительности мембранных модулей. В ряде случаев этого удается избежать путем формирования оптимальной структуры матрицы мембраны, направленного синтеза полимерных материалов для разделения газовых смесей определенного состава, причем особенно перспективны реакционно-диффузионные мембраны, в которых возможно максимальное приближение к природным мембранным системам за счет сопряжения процессов диффузии, сорбции и химических превращений. [c.15]


    Высокая стабильность аллильного радикала объясняется сопряжением неспаренного электрона с двойной связью. Вследствие сопряжения энергия активации взаимодействия аллильного радикала с молекулой, с которой он реагирует, возрастает. Свободные радикалы, получаемые при термодеструкции компонентов ароматических концентратов и нефтяных остатков, обладающие еще большей степенью делокализации неспаренного электрона, могут иметь еще меньшую активность, чем аллильный радикал. [c.161]

    Однако структура (74), в которой я-электроны семициклической связи полностью участвуют в образовании ароматической системы, а полный положительный заряд рассредоточен в основном на атомах водорода метильных групп, не образуется рассчитано, что энергия сопряжения кратных связей в фульвене составляет 54 к Дж/моль, что несколько больше, чем в диене, но явно меньше, чем энергия сопряжения в ароматических системах. [c.224]

    Из ЭТОГО уравнения следует, что с увеличением числа делокализо-ванных электронов, т. е. с увеличением протяженности сопряженной системы, уменьшается внутренняя энергия системы, что экспериментально подтверждено термохимическими исследованиями полимергомологов, содержащих сопряженную систему связей. Полимеры этого класса обладают высокой термостойкостью, они выдерживают в некоторых случаях нагревание выше 600—700 °С. Полимеры с системой сопряженных связей стойки также к радиации. [c.409]

    Взаимодействие двух или нескольких соседних я-связей с образованием единого облака я-электронов, в результате чего может легко происходить передача взаимовлияния атомов этой системы, как известно, называется эффектом сопряжения- Этот эффект способствует понижению общей энергии молекулы. Поэтому диены с сопряженными двойными связями— довольно устойчивые системы. [c.78]

    Как правило, существенно ближе, чем в случае двухцентровых молекулярных орбиталей, располагаются друг другу энергетические уровни системы многоцентровых орбиталей. Поэтому сокращается, по сравнению с соединениями с изолированными кратными связями, расстояние между высшим заполненным и низшим незаполненным уровнями энергии у соединений с системой сопряженных кратных связей, которые служат типичным примером молекул с многоцентровыми орбиталями. Такие соединения обладают максимумами поглощения в близкой ультрафиолетовой области, а при достаточно большом числе атомов, участвующих в формировании многоцентровых орбиталей, даже в видимой области. В последнем случае соединение оказывается окрашенным. Поэтому среди органических соединений с большим числом сопряженных кратных связей имеется много окрашенных в различные цвета. Целый ряд таких соединений используется в качестве органических красителей. [c.154]

    Как правило, существенно ближе, чем в случае двухцентровых молекулярных орбиталей, располагаются друг к другу энергетические уровни системы многоцентровых орбиталей. Поэтому сокращается, по сравнению с соединениями с изолированными кратными связями, расстояние между высшим заполненным и низшим незаполненным уровнями энергии у соединений с системой сопряженных кратных связей. Эти соединения служат типичным примером [c.175]

    Электронные спектры сопряженных систем. Наличие системы сопряженных кратных связей вносит принципиальные изменения в спектры в этих случаях наблюдается изменение и максимума и интенсивности поглощения. В таких системах полосы поглощения невозможно приписать отдельным структурным элементам, ответственной за поглощение света становится вся система сопряженных связей. Молекулярные орбитали простых сопряженных систем, например 1,3-бутадиена, можно рассчитать теоретически [54]. Сравнение относительного расположения энергетических уровней бутадиена с уровнями изолированных двойных связей этилена показывает, что энергия высшей занятой молекулярной орбитали увеличилась, а энергия низшей незанятой л-орбита-ли, наоборот, уменьшилась (рис. [c.233]

    Чтобы понять, как характер поглощения связан со строением органического вещества, вернемся к условию Бора Е — Ео = /IV. Чем ближе друг к другу находятся оба энергетических уровня (основной и возбужденный), тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать действующий квант света, тем, следовательно, меньше его частота (и соответственно больше длина волны). Разность энергий Е — Ед определяется природой возбуждения. Свет видимой и ультрафиолетовой частей спектра обладает энергией, достаточной для возбуждения электронов затрачиваемая на возбуждение энергия определяется в конечном счете подвижностью электронов. Так, электроны 0-связей требуют для своего возбуждения квантов с большой энергией, эти электроны малоподвижны. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные л-электроны, поглощает свет при 193 нм. Сопряженные двойные связи в бутадиене, обладая еще большей подвижностью я-электронов, вызывают поглощение уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновая из которых расположена в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, как с ростом сопряжения (ростом подвижности электронов) поглощение постепенно сдвигается в длинноволновую область — в область квантов со все меньшей энергией. Однако все упоминавшиеся пока соединения бесцветны — их поглощение лежит в ультрафиолетовой области спектра. [c.358]


    Несмотря на низкую энергию резонанса, а также на то, что по межатомным расстояниям в бутадиене нельзя судить о делокализации, тот факт, что молекула бутадиена плоская [21], свидетельствует о наличии некоторой делокализации, хотя и не в такой степени, как предполагалось ранее. Аналогичная делокализация найдена и в других сопряженных системах (например, С = С—С = 0 и С = С—С = М), в протяженных системах с тремя и более сопряженными кратными связями, а также в соединениях, где двойная или тройная связь сопряжена с ароматическим кольцом. [c.53]

    В соединениях с двумя сопряженными двойными связями, например в 1,3-бутадиене, имеются две я- и две я -орбитали (разд. 2.2). Разность энергии между высшей л (х2) и низшей л (Хз) орбиталями меньше, чем разность энергии между л- и [c.307]

    Энергия адсорбции молекул, содержащих изолированные и сопряженные двойные связи, на оксиде алюминия выше, чем на силикагелях. Поэтому диапазон величин адсорбционных коэффициентов таких веществ на нем [c.56]

    Энергию сопряжения бензола можно подсчитать следующим образом. По формуле Кекуле в бензоле имеются три простые связи С—С, три двойные связи С=С и шесть простых связей С—Н. На основании энергий связи можно подсчитать теплоту образования такой гипотетической молекулы  [c.116]

    Протяженность блоков сопряжения и расстояние между ними зависят от метода синтеза полимера с сопряженной системой связей, его химического строения, конформационной устойчивости макромолекул, энергии межмолекулярных взаимодействий и от физической структуры полимера. Все факторы, приводящие к нарушению копланарности, снижают степень делокализации электронов и ухудшают свойства полимеров, обусловленные системой сопряжения. Кристаллизация, если она не связана с изменением конформации молекул и нарушением копланарности, приводит к улучшению в первую очередь полупроводниковых свойств, так как переход электронов от одной молекулы к другой облегчается упорядоченным расположением макромолекул в полимере. [c.410]

    В бензоле, например, энергия резонанса равна 36 ккал/моль, т. е. составляет большую величину. Бензол являемся моделью ароматических веществ, и этот термин сохраняют для описания плоских циклических систем с сопряженными двойными связями, обладающих по правилу Хюккеля (4ге + 2) я-электронами (га = О, 1, 2 и т. д.). [c.83]

    Обращают на себя внимание сопряженность роста радиуса атомов и уменьшение потенциала ионизации с увеличением порядкового номера элемента. В том же направлении уменьшается энергия связи атомов в кристаллической решетке, ширина запрещенной зоны и энтальпия образования твердых оксидов у 81, Ое, 5п и РЬ, что обусловлено уменьшением электроотрицательности атомов с ростом порядкового номера. В том же направлении происходит металлизация химической связи атомов в кристаллах элементарных веществ и сильный рост их проводимости. [c.289]

    Вычислите энергию сопряжения бензола и пиридина, пользуясь энергией связей, теплотой парообразования воды 41,8 кДж/моль и теплотами сгорания бензола 3298,4 кДж/моль и пиридина 2821,5 кДж/моль (определены экспериментально). [c.25]

    В молекулах бензола и алкилароматических углеводородов энергия связи между атомом углерода в кольце и водородом сопос — тавима с прочностью С —Н —связи в метане, а энергия отрыва водорода от углерода, сопряженного с ароматическим кольцом, значительно ниже, чем энергия С —Н —связи в алканах. [c.14]

    Учитываются также поправки на сопряжение (50 кДж/моль, т. е. 12 ккал/моль) и кумуляцию (34 кДж/моль, т. е. 8 ккал/моль) в активированном комплексе. Энергия связи R---H в активированном комплексе может быть также, согласно Ф. Б. Мойну, определена по значению энергии этой связи в углеводороде из соотношения  [c.30]

    Термичеекая устойчивость аренов сильно изменяется в зависимости от строения. Незамещенные и метилзамещенные беизол и нафталины значительно более устойчивы, чем алкаиы. Алкилза-мещенные арены, имеющие связь С—С, сопряженную с кольцом, разлагаются быстрее алканов. Это объясняется распределением энергии между связями в молекуле (цифры — энергия связи в кДж/моль)  [c.232]

    Малая зависимость состава продуктов крекинга от температуры указывает на незначительное различие энергий разрыва отдельных С—С-связей в молекулах алканов. Дейст-ьительно, начиная с жидких алканов нормального строения хорошо выполняется правило аддитивности энергий связей, как это следует из термохимических данных для теплот образования [161, 162]. Только первые три члена гомологического ряда метана обнаруживают отклонения от правила аддитивности, что связано с наличием небольшой энергии сопряжения порядка нескольких ккал [161]. [c.78]

    Вот почему энергия последовательного отрыва каждого из атомов В в молекуле АВ неодинакова. При этом возможны различные случаи. Если разрыв одной связи требует некоторого ослабления другой, тогда энергия последовательного отрыва уменьшается. Примером служит молекула НгО. Отрыв первого атома водорода требует 118 ккал/моль, второго — 102 ккал/моль (последняя величина характеризует прочность радикала ОН). Если разрыв одной связи сопряжен с упрочением другой, то последовательность будет обратной. Так, отрыв атомов хлора от молекулы хлорида алюминия А1С1з сопряжен с затратой 91, 95 и 119 ккал/моль. Возможны и более сложные случаи. Так, последовательный отрыв атомов водорода от метана связан с затратой энергии, равной соответственно 102, 88, 124 и 80 ккал/моль. Однако для любого вещества средняя арифметическая величина совпадает со средней энергией связи. Так, для СН4 имеем [c.119]

    Ацетоуксусный эфир можно рассматривать как ацетон, в котором один атом водорода замещен на электроноакцепторную этоксикарбонильную группу. Ацетоуксусный эфир образует енол легче, чем ацетон. Во-первых, атомы водорода в метиленовой группе ацетоуксусного эфира находятся под влиянием двух электроноакцепторных групп и поэтому имеют значительно большую протонную подвижность, чем атомы водорода в метильных группах ацетона (для ацетоуксусного эфира р/(а= 10,68, тогда как для ацетона рКа =20,0). Поэтому этот атом водорода легче отщепляется в виде протона и с большей степенью вероятности присоединяется к атому кислорода карбонильной группы, имеющему наибольшую электронную плотность, образуя енол. Во-вторых, в еноле возникает более энергетически выгодная система сопряженных кратных связей С = С и С = 0, что влечет за собой уменьшение энергии системы. И, наконец, дополнительный выигрыш энергии получается при образовании хелатной структуры енольной формы. [c.240]

    Системы сопряженных связей. Как мы знаем, электроны, входящие в атомные остовы и валентные ст-электроны, находятся на энергетических уровнях, которым соответствуют локализованные электронные состояния. Поэтому, чтобы установить электронную конфигурацию молекулы, обладающей системой сопряженных связей, достаточно определить энергетические уровни ее делокализо-ванных я-электронов. Заметим, что большой энергии связи ст-элек-тронов, равной 62,7 ккал/моль, отвечает большая разность энергий между их валентным и возбужденным энергетическими уровнями, равная 7,9 эВ. Следовательно, полоса поглощения ст-связи лежит в коротковолновой ультрафиолетовой части спектра и начинается от 155 ммк. [c.91]

    Обратите внимание на то, что для образования одного моля сахара СбН120б должно быть поглощено и использовано 48 молей фотонов. Необходимая для этого энергия излучения поступает из видимой части солнечного спектра (см. рис. 5.3 ч. 1). Фотоны поглощаются фотосинтетическими пигментами в листьях растений. К важнейшим из этих пигментов относятся хлорофиллы структура наиболее распространенного хлорофилла, так называемого хлорофилла-а , показана на рис. 25.1. Хлорофилл представляет собой координационное соединение. Он содержит ион связанный с четырьмя атомами азота, которые расположены вокруг него по вершинам квадрата в одной плоскости с металлом. Атомы азота входят в состав порфиринового цикла (см. разд. 23.2). Следует обратить внимание на то, что в окружающем ион металла цикле имеется ряд двойных связей, чередующихся с простыми связями. Благодаря такой системе чередующихся, или сопряженных, двойных связей хлорофилл способен сильно поглощать видимый свет. На рис. 25.2 показано соотношение между спектром поглощения хлорофилла и спектральным распределением солнечной энергии у поверхности Земли. Зеленый цвет хлорофилла обусловлен тем, что он поглощает красный свет (максимум поглощения при 655 нм) и синий свет (максимум поглоще- [c.442]

    Следует отметить, что энергия последовательного отрыва отдельных атомов В от молекулы АВ не совпадает с энергией связи. При отрыве атомов происходит изменение ядерной и электронной конфигурации системы и, как следствие, изменение энергии взаимодействия атомов, входящих в молекулу. Так, если в молекуле метана СНд углы Н-С-Н равны 109,5, то в радикале СН] они составляют примерно 120 - пирамидальная группа Hj в метане превращается в почти плоский метильный радикал. Поэтому значения энергии отрыва каждого последующего атома В от молекулы АВ неодинаковы. Если разрыв одной связи вызывает некоторое ослабление другой связи, то энергия последовательного отрыва атомов уменьшается. Так, на отрыв первого атома водорода в молекуле НгО требуется 494 кДж/моль, второго-427 кДж/моль (второе значение характеризует прочность радикала ОН). Если же разрыв одной связи сопряжен с упрочнением другой, то закономерность будет обратной. Так, на последовательный отрыв трех атомов хлора от молекулы хлорида алюминия А1СЬ требуется энергия соответственно 381, 397 и 498 кДж/моль. Возможны и более сложные закономерности. [c.63]

    Отщепление водорода происходит от а-метиленовых групп полиизопреновой цепи, где за счет сопряжения с двойной связью энергия связи С—Н уменьшена приблизительно на 42 кДж/моль. Образующийся свободный радикал аллильного типа может изо-меризоваться, вызывая деструкцию макромолекулы полинзопрена  [c.243]

    Двойные (или тройные) связи, сопряженные с р-орби-талью соседнего атома. Если атом, соседний с двойной связью, имеет р-орбиталь, возникает система из трех параллельных р-орбиталей, которые перекрываются. Как говорилось выше, существует общее правило, что при перекрывании п атомных орбиталей возникает п молекулярных орбиталей согласно этому правилу, перекрывание р-орбитали с соседней двойной связью дает три новые орбитали (они показаны на рис. 2.4). Средняя орбиталь — несвязывающая, с нулевой энергией связи центральный атом углерода в ее образовании не участвует. [c.53]

    Как указывалось выше, не удается в рамках одного набора параметров метода ППП с одинаково хорошей точноспгью воспроизвести свойства основного и возбужденного состояний. В связи с этим Дьюар с сотр. разработали параметризацию метода ППП, специально приспособленную для расчета свойств основных состояний, в первую очередь теплоты атомизации органических молекул. Точность метода Дьюара в предсказании энергий основных состояний сопряженных молекул составляет 0,1—0,2%, или 12— 20 кДж/моль, что вполне достаточно для решения большинства задач. Схематично изложим параметризацию Дьюара. Энергия связи молекулы записывается в виде суммы  [c.246]

    Зная энергии связей (см. табл. 8.1), можно вычислить энергию структуры, отвечающей строению циклогексатриена-1,3,5, т. е. ту энергию, которую должен был бы иметь бензол, если бы для него полностью была справедлива формула Кекуле энергия трех двойных связей С=С + энергия трех простых связей С—С + энергия шести связей С—Н равна 5394 кДж/моль. При экспериментальном же определении получается на 150 кДж меньше. Таким образом, бензол устойчивее трижды ненасыщенного циклогексатрнена-1,3,5. Значение 150 кДж/моль — это энергия сопряжения в бензоле. Она довольно велика по сравнению, например, с бутадиеном, где составляет всего лишь около 12 кДж/моль. [c.259]

    Наоборот, в соединениях типа хлорбензола галоген мало подвижен вследствие сопряжения неподеленных пар электронов атома галогена с тс-электронами бензольного ядра, что создает частичную двоссвязносгь свя )и С — С1, уменьшаются ее электрический момент диполя и длина увеличивается энергия связи и уменьшается, следовательно, реакционная способность  [c.108]

    Делокализация большого числа я-электронов по молекулярной цепи полимера с системой сопряженных связей обусловливает большой выигрыш энергии, т. е. высокую термодинамическую устойчивость таких полимеров. Это объяс[1яется тем, что образование соединений с системой сопряже1П1ых связен протекает с выделением большого количества тепла, значительно превышающего значения энергий, вычисленных на основании констант энергии связи. Например, для бензола разность энергии, рассчитанной по теплотам горения и по константам энергии связи, составляет около 146 кДж/моль (35 ккал/моль), для стирола — [c.408]

    Этот метод дает высокую чистоту конечного продукта. Сами органические соединения, содержащие сопряженные двойные связи, являются полупроводниками. Кристаллы антрацена 14H10 являются полупроводником с энергией активации 1—3 эВ с преобладающей дырочной проводимостью и малой удельной электрической проводимостью  [c.468]

    Как уже говорилось, в жидкости изменение энергии при разрыве или образовании связи существенно зависит от энергии реактивного взаимодействия. Именно этим объясняется то, что изменение энтальпии ДЯ при разрыве одной Н-связи в кольцевомдимере(СН зСООН) в жидкой уксусной кислоте составляет 8,0 кДж/моль, а при разрыве Н-связи в разомкнутом димере 21 кДж/моль [17]. Различие связано схем, что в разомкнутом димере примерно 70% молекул СН3СООН имеет яграяс-конформацию. Иногда полагают, что сопряженные Н-связи, например, в спиртах и воде [c.63]

    Станкевич И. В. Энергия я-электропов в макромолекулах с системой сопряженных дво11ных связей. II. Обобщенные линейпые системы, содержащие в цепи сопряжения гетероатомпые фрагменты Ц Жури. физ. химии.— 1969.— Т. 43.- С. 556-561. [c.69]


Смотреть страницы где упоминается термин Сопряжение из энергии связей: [c.149]    [c.83]    [c.59]    [c.899]    [c.35]    [c.68]    [c.87]    [c.28]    [c.63]   
Теория резонанса (1948) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Сопряжение

Сопряжение связи

Энергия связи

Энергия сопряжения



© 2025 chem21.info Реклама на сайте