Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя основность

    А. В. Писаржевский показал (1912), что для ионных реакций обмена в Смешанных растворителях (смеси воды со спиртами, глицерином, гликолем) величины изобарных потенциалов реакции меняются с изменением растворителя вплоть до перемены знака. Ни внутреннее трение, ни электролитическая диссоциация, ни растворимость не объясняют полностью влияния растворителя на положение равновесия. Основную роль для ионных равновесий в различных растворителях играет взаимодействие с растворителем растворенных веществ, диссоциирующих ва ионы (сольватация ионов). [c.287]


    Классическими гомогенными катализаторами изомеризации олефинов, известными более 100 лет, являются неорганические и органические кислоты. В 50 гг. было найдено, что изомеризация активируется не только кислотами, но и основаниями, и работы 60 гг. посвящены преимущественно основному катализу. Однако в последнее десятилетие быстро растет интерес к новому направлению гомогенного катализа — катализу комплексами металлов. Эти разные, на первый взгляд, типы активирования имеют много общего, так как кислотно-основный катализ связан с координацией молекул растворителя, катализатора и олефина в активный комплекс, а при катализе комплексами металлов образование ионов углеводородов и их превращения представляют собой один из этапов изменения олефина. Оба типа активирования характеризуются общими корреляционными кинетическими закономерностями (уравнение Бренстеда применимо во всех случаях), сходным влиянием растворителя и т. д. [c.88]

    В результате изучения влияния растворителей на силу кислот было показано, что оно определяется прежде всего степенью основности растворителя, а также (в меньшей степени) его диэлектрической проницаемостью. При этом соотношение в силе двух данных кислот может значительно различаться в разных растворителях. Так, в водных растворах хлорная кислота является более сильной, чем хлористоводородная, а в растворах в жидком аммиаке это соотношение уже не сохраняется. [c.413]

    Относительная летучесть интересующего компонента разделяемой смеси, которая в принципе всегда является многокомпонентной, зависит прежде всего от свойств компонентов смеси. Учет этой зависимости составляет одну из основных задач теории и практики разделения смесей. Разумеется, и при глубокой очистке веществ рабочим объектом также является многокомпонентная смесь, состоящая из очищаемого вещества и примесей. Однако здесь мы имеем специфическую особенность, которая заключается в том, что исходное очищаемое вещество содержит примеси уже в сравнительно небольших количествах. Обычно для достижения этой цели применяется предварительная очистка вещества. Таким образом, при глубокой очистке веществ приходится иметь дело с разбавленными растворами. В таких растворах содержание каждого из растворенных веществ (примесей) незначительно по сравнению с содержанием растворителя (основное вещество) и поэтому взаимным влиянием примесей в них можно пренебречь. Следовательно, в этом случае разделяемую многокомпонентную смесь условно можно рассматривать как бинарную, состоящую из основного компонента и данной примеси. При этом обычно принимают также, что в паровой фазе (при невысоких давлениях) ввиду ее большой разряженности отсутствует взаимодействие не только между молекулами примесей, но и между молекулами примесей и основного компонента, т. е. тем самым постулируется, что образующийся из жидкости пар представляет собой идеальный газ. Но даже при указанных упрощающих допущениях установление зависимости коэффициента разделения от свойств компонентов такой псевдобинарной смеси представляет непростую задачу. [c.33]


    Совместно с В. А. Кремером автор исследовал влияние растворителей на спектры флюоресценции салициловой кислоты и основного красителя родамина В (экстра). Оказалось, что спектры флюоресценции как салициловой кислоты, так и основного красителя родамина В изменяются под влиянием растворителей. [c.253]

    По этой схеме можно рассматривать диссоциацию уже готовой катионной кислоты, т1 е. гидролиз соли основания в различных растворителях, но не влияние растворителя на диссоциацию основания. Из этой схемы вытекает ложное следствие, что диссоциация основания происходит за счет взаимодействия его с растворителем с образованием ионов лиония М№, а не за счет взаимодействия с молекулами растворителя с образованием ионов лиата (М — Н ). Конечно, в растворе всегда есть ионы лиония и ионы лиата однако в результате диссоциации оснований в растворе всегда появляется избыток ионов лиата (М — Н) . Таким образом, первичным процессом является взаимодействие незаряженной молекулы основания с молекулами растворителя с образованием ионов по схеме В + М В№ + (М — Н) . Диссоциация основания в водном растворе зависит от константы кислотности молекул Н.2О или константы основности иона ОНа не от константы кислот- ности иона НдО" или константы основности молекулы Н О, как это имеет место в случае незаряженных или анионных кислот. [c.298]

    Конечно, влияние растворителя на обмен ионов водорода на катионы не исчерпывается только влиянием основности растворителя как и при обмене любых катионов, играет роль диэлектрическая проницаемость, снижение которой является дополнительным фактором, изменяющим кислотность катионитов. При обмене ионов водорода на катионы играет также большую роль изменение набухаемости различных форм ионита в различных растворителях. Этот эффект здесь более значителен, чем при обмене катионов металлов, так как характер связи ионов водорода в ионите отличается от характера его связи с ионами металлов. [c.371]

    ИСПОЛЬЗОВАНИЕ ВЛИЯНИЯ РАСТВОРИТЕЛЕЙ НА СВОЙСТВА ЭЛЕКТРОЛИТОВ ПРИ КИСЛОТНО-ОСНОВНОМ ТИТРОВАНИИ и ПРИ ДРУГИХ МЕТОДАХ АНАЛИЗА [c.440]

    Количественная зависимость силы кислот и оснований от свойств растворителя и растворенного вещества. Для характеристики изменения свойств электролитов под влиянием растворителей можно воспользоваться выведенным Н. А. Измайловым основным уравнением, характеризующим влияние растворителей на силу электролита  [c.393]

    Выбор метода. При оценке и выборе методов кислотно-основного титрования необходимо учитывать влияние растворителя не только на свойства определяемого вещества, но и на свойства продуктов взаимодействия титруемого соединения с реактивом. Условия кислотно-основного титрования определяются рядом факторов, которые можно разбить на три группы. [c.430]

Таблица 3.3. Влияние кислотно-основных свойств растворителя на диссоциацию кислот и оснований Таблица 3.3. Влияние <a href="/info/736532">кислотно-основных свойств растворителя</a> на <a href="/info/7995">диссоциацию кислот</a> и оснований
    Влияние растворителей. Скорость каталитических процессов в растворах может резко изменяться в зависимости от природы растворителя. Хотя в настоящее время еще нет общей теории ускоряющего или замедляющего действия растворителя, но считается, что основная роль растворителя состоит в превращении реагирующих молекул в более реакционноспособные. Так, полярные молекулы растворителя могут увеличивать скорость перехода реагирующих молекул в более активную ионизированную форму. [c.102]

    При четко определенной лимитирующей стадии процесса становится возможным надежно определять влияние природы растворителя на скорость реакций каталитического гидрирования в растворах. В зависимости от лимитирующей стадии процесса четко проявляется воздействие двух основных факторов 1) изменение энергии связи водорода с поверхностью под влиянием растворителя и 2) изменение коэффициента распределения гидрируемого вещества между раствором и поверхностью катализатора. [c.201]

    Проведено исследование адсорбционных состояний водорода на скелетном никелевом катализаторе из водных растворов алифатических спиртов, в том числе с добавками гидроксида натрия, и бинарных растворителей ДМФА-вода. Выявлены основные причины, обусловливающие влияние растворителя на закономерности адсорбции. Показано, что с ростом донорного числа растворителя возрастало количество адсорбированного прочносвязанного водорода. [c.21]


    Из всех неводных растворителей ацетонитрил наиболее широко применяется и, вероятно, наиболее интенсивно изучается. Остальные нитрилы не обладают особыми преимуществами по сравнению с ацетонитрилом интерес к ним в основном вызван тем, что их использование позволяет осуществлять замену растворителя без существенных изменений условий опыта. Так, например, поддерживая более или менее постоянными другие условия опыта, можно изменять значение диэлектрической постоянной. Возможное влияние растворителя на продукты реакции можно легко обнаружить из данных по изменению структуры растворителя. [c.4]

    Основной вывод из результатов исследований следующий. При рассмотрении вопроса о влиянии растворителей, наполнителей или эмульгаторов на всасывание основного вещества через кожу важно учитывать не только тип вспомогательного вещества, но и соотношение их в растворе или смеси. [c.115]

    Учет характера кислотно-основных взаимодействий помогает вывести четкие закономерности влияния растворителей на силу кислот и оснований. [c.58]

    Количественные обобщения и влияние растворителя на скорость химических реакций распространяются прежде всего на те три основных типа взаимодействий в растворах, которые перечислялись на с. 33—34. Поскольку энергия всех этих взаимодействий в первом приближении обусловлена электростатическими взаимодействиями, то разумеется, и здесь влияние диэлектрической проницаемости выступает на первый план. [c.79]

    Влияние растворителя на кислотно-основное равновесие [c.238]

    Аналогичная зависимость между энтальпией гидратации АК и в случае взаимодействия АК с урацилом, 6-азаурацилом и тимином отсутствует. Это свидетельствует о том, что влияние растворителя на процесс взаимодействия в указанных системах не является доминирующим. Вследствие того, что взаимодействие между боковыми группами АК и упомянутыми выше НО не обнаружено, можно предположить возможность кислотно-основного взаимодействия между концевыми цвиттерионными группами аминокислот и боковыми группами нуклеиновых оснований (NH, СО). С целью проверки данного предположения необходимо рассмотреть корреляции между коэффициентами парных взаимодействий и изменениями энтальпий диссоциации цвиттерионных групп АК. Для взаимодействия с урацилом линейные корреляции обнаружены для зависимости коэффициентов парных взаимодействий от энтальпий диссоциации цвиттерионной карбоксилатной группы АК. На рис. 4.21 видны две линейные зависимости [СОО"-гр.]) I - ряд Ala-Phe-Thr-Gly, II - ряд Leu-Val-Gly-Asn, причем I имеет больший угол наклона, чем II. Обе [c.241]

    Этот вывод основывается на отсутствии торможения окисью азота и отсутствии влияния растворителя. Основные продукты реакции в паровой фазе — этан и ацетон — соответствуют механизму, требующему расщепления перекисной связи, причем образующиеся радикалы распадаются на ацетон и метильные радикалы, которые соединяются, образуя этан. Суммарная реакция протекает по первому порядку, и ее скорость эквивалентна скорости начального расщепления, а энергия активации (39,1 ккал) несколько выше, чем энергия активации для рассмотреяш соединений. Есть доказательство, что при распаде в паровой [c.195]

    Возможны переходы с несвязывающей атомарной орбитали на молекулярную орбиталь с большей энергией переходы и п- о. Полосы п->л -переходе в наблюдаются в ближней УФ и видимой областях спектра и часто называются -полосами. Полосы п а -переходов наблюдаются в дальней, а иногда и в ближней УФ-областях. Переходы п- л являются запрещенными и их интенсивности значительно ниже интенсивностей переходов л я и я уст (коэффициент поглощения для разрешенных переходов 10 и более, для запрещенных — меньше 10 ). В УФ-области в вакууме наблюдаются переходы с орбитали в основном состоянии на одну из орбиталей с очень высокой энергией, приводящие к образованию молекулярных ионов. Метод эмпирической идентиф икадии я->л -и п л -переходов основан на их поведении при растворении вещества в различных растворителях. Для л я -переходов при увеличении полярности растворителя наблюдается (хотя и не всегда) сдвиг /С-полосы поглощения в длинноволновую часть спектра. Исключением является обратный сдвиг Я -полосы поглощения для некоторых ароматических молекул (смещение полосы поглощения в длинноволновую часть спектра называют батохромным сдвигом, в коротковолновую часть — гипсохромным). Для п я -переходов при увеличении полярности растворителя наблюдается гипсохром-ный сдвиг соответствующей -полосы поглощения, причем сдвиг на гораздо большую величину, чем для /С-полос. В табл. 1 показано влияние растворителей на спектр окиси мезитила. Обычный батохромный сдвиг полос, обусловленных я- -л -переходами, вызван взаимодействием с растворителем, которое несколько увеличивает свободу движения электронов в молекуле. Однако при л л -переходах изменения в распределении электронов более значительны, соответственно увеличиваются изменения в расположении ядер. Согласно принципу Франка — Кондона, процесс перехода в новое электронное состояние происходит за 10 с за это время ядра не успевают изменить своего взаимного расположения, поэтому наблюдаемый переход происходит при более коротких длинах волн, когда ядра еще не успели занять своего нового положения. [c.9]

    При дегидрохлорировании в жидкой среде большое влияние на направление реакции может оказать полярность растворителя. Ряд авторов описывает влияние растворителей на ориентацию отщепления хлористого водорода от различных хлорсодержащих соединений, в основном от хлоралканов [139-145]. Отщепление НС1 от хлорзамещенных у1леводоро-дов под действием полярного растворителя может протекать [c.34]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Одним иа методов оценки влияния растворителя на силу кислот и оснований является метод определения относительной кис-> лотности или основности протолита по потенциалам полуоттитрованности его Б среде данного органического растворителя ( 50%-ной оттитрованности протолита справедливо [c.91]

    Существенным достоинством протолитической теории является учет влияния растворителя на процесс кислотно-основного взаимодействия. Диссоциацию кислоты НА в растворителе 5о1у можно представить схемой [c.31]

    Показано, что под влиянием растворителя полосы ОВ-группы в тяжелом метпловом спирте и в тяжелой воде смещаются и в тем большей степени, чем сильнее выражена основность растворителя. Горди и Стенфорд нашли во многих случаях симбатность между силой этих оснований в воде и величиной смещения частоты ОН-группы в спектрах спиртов под влиянием ряда основных растворителей. [c.256]

    Таким образом, кислоты в растворах взаимодействуют с растворителем, это взаимодействие обязано водородной связи. Проведенное исследование показало, что смещение ассоциированной полосы ОВ-группы ряда карбоновых кислот различной силы под влиянием ацетона и диоксана примерно одинаково и не зависит от силы кислоты. В то же время установлено, что величина смещенпя частоты ОВ-грунпы многих кислот под влиянием растворителя тем больше, чем сильнее его основность. Это согласуется с тем обстоятельством, что изменение силы ряда кислот одной природы под влиянием данного растворителя в первом приближении постоянно (см. гл. VI). [c.256]

    Под влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований и солей. В зависимости от растворителя одно и то же вещество может быть неэлектролитом, сильным или слабым элехгтролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Эта изменчивость свойств веш еств под влиянием растворителей может быть с успехом использована для решения ряда аналитических задач при кислотно-основном тптрованпи, при титровании по методу осаждения, при полярографическом анализе п при других методах анализа. [c.440]

    Однако значительно большие возможности дает определение кислых групп амфотерных веществ в основных растворителях, в которых намного уменьшается отношение iir / o6а и увеличивается отношение КуКоб , и основных групп в кислых растворителях, в которых уменьшается отношение КуКоб-g и увеличивается отношение Z //Io6a. ПР оценке влияния растворителей на величину этих отношений следует руководствоваться рассмотренными выше уравнениями для ткис  [c.448]

    Таким образом, рассмотрено влияние растворителей по отношению ко всем случаям кислотно-основного титрования. На основанни выведенных уравнений моншо выбрать растворитель или группу растворителей, улучшающих условия титрования в данном случае. [c.450]

    В иоследовз ниях последних лет, особенно в работах Н. А. Измайлова, было показано, что ПО Д влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований, солей. В зависимости от свойств и структуры растворителя одно и то же вещество может быть неэлектролитом, Сильным или слабым электролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Подобная зависимость ц изменение свойств вещества под влиянием растворителей широко используются в данное время для решения ряда аналитических задач при электрометрическом титровании, поля-ро графи ческом, амперометричеоком и других методах физикохимического анализа для а) повышения либо понижения растворимости вещества б) усиления либо ослабления силы кислот, оснований и солей в) изменения соотношения между ионным [c.129]

    В зависимости от использованного растворителя относительная скорость изменяется следующим образом бензол—1, этилацетат — 11, метилэтилкетон — 59, ацетонитрил — 300, диметилформамид — 1950, дим.етилсульфоксид — 7200. Однако влияние растворителей на эту реакцию зависит не только от их полярности, но и от основности. При близкой полярности реакцию в большей степени ускоряют более основные растворители, способные служить акцепторами протона из а-комплекса. Например, диоксан ускоряет реакцию больше, чем бензол, пиридин больше, чем нитробензол и т. д. [c.163]

    Полимеризация в растворе проводится при нагревании и перемешивании (вместе с растворенным инициатором или катализатором). В результате реакции пелучается полимер с малой полидисперсностью (т. е. с макромолекулами, имеющими в основном одинаковую степень полимеризации), что является значительным преимуществом полимеризации в растворе по сравнёнию с блочным методом. Однако существенный недостаток метода заключается в том, что образующиеся полимеры имеют меньший молекулярный вес, чем при блочной полимеризации, из-за возможности легкого обрыва цепи полимеризации под влиянием растворителя. Степень полимеризации в этом случае зависит от температуры, количества инициатора, характера растворителя и концентрации мономера в смеси. [c.376]

    Продукт присоединения II протонируется присутствующей в растворе кислотой (часто это протонирование идет уже под влиянием растворителя). В молекуле имеется два центра с -основными свойствами. Протонирование В вызывает сдвиг равновесия в сторону обратной реакции [см. схему (Г.7.8)] и поэтому не представляет интереса. Протонирование же гидроксильного кислорода приводит к образованию ониевого иона III, который тут же обратимо стабилизуется путем отщепления воды и образования карбоний-оние-вого иона IV с делокализованным положительным зарядом Из этого иона, образуется, как обычно (см. разд. Г, 2 и Г, 3), путем элиминирования протона или присоединения находящегося в растворе основания нейтральный конечный продукт реакции [см., например, схемы (Г.7.10), (Г.7.12), (Г.7.21)]. [c.55]

    Влияние растворителей на процесс нитрования очець значительно, и сопоставление опытов первой и второй серий, таким образом, приводит к выводу, что растворители, являющиеся кислотами по отношению к HNOa, направляют реакцию в бензольное ядро (нитрование катионами нитрацидия), а растворители, имеющие основные свойства по отношению к HNO3, способствуют нитрованию боковой цепи (нитрование анионом NO3). [c.146]

    Дело серьезное. В предыдущей главе много говорилось о том, что влияние растворителя на протекание химического процесса определяется прежде всего двумя его характеристиками до-норно-ацепторными (кислотно-основными) свойствами и диэлектрической проницаемостью. Однако мы не вольны, работая с индивидуальными растворителями, выбирать оба свойства сразу. [c.47]

    Лищь теперь, ознакомивщись с основными типами химических процессов в растворах, с влиянием растворителя на эти процессы и на многие свойства растворенного вещества, можно обратиться к проблеме, с которой, на первый взгляд, следовало бы начинать эту книгу о растворах, к проблеме растворимости. Но это лищь на первый взгляд, потому что растворимость вообще и [c.65]

    Нрисоедннеиие галогенов к двойной связи алкенов иредставляет собой одну из простых модельных реакций, и на этом примере можно рассмотреть влияние основных факторов, на основании которых могут быть сделаны аргументироваршые выводы о детальном механизме ироцесса. Для обоснования выводов о механизме любой реакции следует располагать данными по 1) кинетике реакции, 2) стереохимии, 3) влиянию заместителей в исходном субстрате на скорость реакции, 4) влиянию растворителя на скорость реакции, 5) наличию или отсутствию [c.404]

    Если действительно уменьшение основности при переходе от (алкил)2NH к (алкил)зМ вызвано влиянием растворителя, то при измерении основности в газовой фазе порядок основиости должен быть другим, что и наблюдалось на опыте. В газовой фазе, где нет растворителя, триалкиламин обладает наибольшей основностью. [c.206]

    Здесь не даются конкретные рекомендации для других ядер, кроме указанных выше. Необходимо придерживаться следующих основных положений. Если имеются предыду-ш,ие работы по ЯМР исследуемого ядра, следует использовать уже применявшийся эталон в отсутствие причин, заставляюш,их выбрать новый эталон. Эталонное вещество должно иметь узкую линию в спектре, если это возможно. Предпочтение отдается синглетному спектру. Следует выбирать такое эталонное вещество, чтобы оно имело резонансный сигнал при возможно более низкой частоте (в наиболее сильном поле), для того чтобы большинство химических сдвигов имело положительный знак. Следует избегать внутренних эталонов, кроме случаев, когда можно провести изучение влияния растворителя на химический сдвиг. [c.445]


Смотреть страницы где упоминается термин Влияние растворителя основность: [c.256]    [c.345]    [c.370]    [c.296]    [c.249]    [c.253]   
Влияние растворителя на скорость и механизм химических реакций (1968) -- [ c.187 , c.189 , c.234 , c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители основные



© 2025 chem21.info Реклама на сайте