Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колотыркина природа

    Для реакций анодного растворения металлов характерна сильная зависимость скорости от состава раствора, в частности, от природы и концентрации анионов (Я. М. Колотыркин, 1955 г.). При добавлении поверхностно-активных анионов скорость увеличивается. Отсюда следует, что первой стадией реакции анодного растворения металла является стадия адсорбции аниона с образованием химической связи с атомом металла. Эта связь облегчает последующие стадии отрыва атома (иона) из кристаллической решетки и его сольватации. Стадия адсорбции может быть связана с одновременным поверхностным перемещением растворяемого атома в более выгодное положение (например, из положения 3 в положение 1, см. рис. 15.4), где облегчено образование адсорбционных и сольватационных связей. [c.330]


    При добавлении в раствор различных анионов в определенных условиях происходит активация пассивных металлов. Эффективность действия анионов обычно падает в ряду С1 > Вг > Г > F > > lOi > ОН, sor, хотя в зависимости от природы металла порядок ионов в этом ряду может изменяться. На рис. 194 приведены потенциостатические кривые анодного растворения железа в боратном буферном растворе и в присутствии NajSOi. При объяснении влияния анионов на анодное поведение металлов необходимо учитывать вытеснение адсорбированного кислорода анионами, внедрение анионов в окисную пленку, которое изменяет ее свойства, а также прямое участие анионов в процессе растворения пассивного металла (Я. М. Колотыркин). [c.385]

    Колотыркин Я- М. Влияние природы анионов на кинетику и механизм коррозии металлов в растворах электролитов//Тр. III Международного конгресса по коррозии металлов.—М. Мир 1968. Т. I. С. 74—88. [c.101]

    В развитии и обосновании этих представлений основная заслуга принадлежит советским ученым. Исследуя растворение железа в щелочах, Б. Н. Кабанов и Д. П. Лейкис впервые пришли к выводу о непосредственном участии ионов ОН в первичной стадии анодной реакции. Б. В. Эршлер обнаружил ускоряющее действие ионов 01 на анодное растворение платины в кислых растворах. Систематические данные по влиянию анионов получены Я. М. Колотыркиным с сотрудниками при исследовании кинетики растворения кадмия, железа, никеля, индия, висмута и амальгам двух последних металлов в кислых растворах электролитов. Была установлена специфичность этого влияния, т. е. зависимость величины и даже знака наблюдаемого эффекта (изменение скорости реакции) как от природы самого аниона, так и от природы металла. На основании кинетических и адсорбционных измерений Я. М. Колотыркин пришел к выводу, что влияние анионов на анодный процесс связано с их специфической адсорбцией на поверхности металла, которая предшествует собственно электрохимической стадии. [c.231]

    Колотыркин Я- М. Влияние природы анионов на кинетику и механизм растворения (коррозии) металлов в растворах электролитов.— Защита металлов, 1967, т. 3, № 2, с. 131—144. [c.175]

    В механизме растворения металлов в кислотах значительная роль отводится анионам растворителя (по Я. М. Колотыркину), так как установлено, что скорость растворения металлов в кислых растворах электролитов зависит не только от концентрации ионов водорода, которые непосредственно участвуют в процессе, но и от природы и концентрации анионов, не принимающих на первый взгляд такого участия. Изменение анионного состава раствора может приводить к изменению катодного (выделение водорода) и анодного процессов. Получены данные о непосредственном участии анионов в реакциях разряда и образования металлических ионов. [c.77]


    Естественно, что столь большие расходы народного хозяйства, связанные с коррозией, вызвали огромное количество исследований, направленных на изучение природы явления и изыскание все более совершенных способов защиты металлов. Успехи в области борьбы с коррозией приносят большую пользу всем отраслям народного хозяйства. Это делает работу специалистов по коррозии, как выразился академик Я. М. Колотыркин, как будто невидимой, но очень [c.12]

    Представления об адсорбционной природе пассивирующего слоя возникли из работ Лангмюра и Таммана и развиваются советскими исследователями Эршлером, Кабановым, Колотыркиным и др. Основной механизм защиты, по мнению этих исследователей, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирующимися частицами без разрушения металлической решетки. Для такой защиты не обязательно иметь монослой адсорбированного вещества даже доли монослоя достаточны для таких изменений электрических свойств границы раздела и перераспределения потенциала на этой границе, которые обусловливают торможение анодной реакции. [c.176]

    В последние годы начато использование этого метода для изучения одного из принципиальных вопросов теории пассивности металлов — природы нестационарного тока ионизации в пассивной области. По адсорбционной теории Я. М. Колотыркина [50, 51, 206] этот ток I связывался с переходом ионов металла в раствор ( Ме), а по пленочной теории [12, 202] — со скоростью образования окисла ( ок- в стационарных условиях 1 = = г ст = мс = ок, Т. е. скорость образования окисла равна скорости его растворения). Экспериментальное определение при- [c.172]

    Переход металла в пассивное состояние и перепассивация не зависят от природы окислителя, действующего на металл. Этот важный факт установлен Я. М. Колотыркиным при исследовании поведения нике-ля в растворе серной кислоты. Анодная кривая была построена по величинам потенциалов, достигаемым в указанном растворе при добавлении в него пяти различных окислителей. При этом величины токов растворения рассчитывали по закону Фарадея на основании весовых потерь никеля. Установлено, что точки, полученные в результате проведения опытов в растворах с различными окислителями, ложатся на одну поляризационную кривую. Следовательно, переход металла в пассивное состояние и его перепассивация зависят только от величины потенциала и не зависят от причины, его обусловливающей— от природы окислителя или от поляризации внешним током. [c.58]

    Катодными процессами при коррозии металлов чаще всего являются процессы выделения водорода и восстановления кислорода, неоднократно изучавшиеся многими советскими электрохимиками. Особенно существенный вклад в развитие теории коррозии с кислородной деполяризацией был сделан Н. Д. Томашовым. Также весьма интенсивно изучались и процессы анодного растворения металлов. Интересные взгляды на природу анодного процесса при растворении металлов, впервые высказанные Б. В. Эршлером, широко развивались Я. М. Колотыркиным и его сотрудниками. Согласно этим авторам, растворению ионов, существующих в растворе в виде прочных комплексов или сольватов, предшествует образование на аноде соответствующих поверхностных комплексов, которые затем переходят в раствор. [c.158]

    Кинетическое истолкование явлений электрохимической коррозии было впервые предложено А. Н. Фрумкиным (1932), который обратил внимание на то, что процесс разложения амальгам щелочных металлов подчиняется законам электрохимической кинетики. Эта идея была развита затем количественно Вагнером и Траудом (1938), которым удалось показать хорошее согласие теории с экс-периментальными данными по скоростям разложения амальгам Цинка. Близкие взгляды были высказаны А. И. Шультиным, Я- В. Дурдиным и рядом других авторов. Плодотворность использования закономерностей электрохимической кинетики для количественного описания коррозии твердых металлов была показана Я. М. Колотыркиным, а также В. В. Скорчеллетти, М. Грином и др. Работы этих ученых оказали значительное влияние на развитие современных взглядов на процессы коррозии и способствовали установлению связи между электрохимической наукой и учением о коррозии металлов. Кинетическую теорию коррозии часто неудачно называют гомогенно-электрохимической теорией или гомогенно-электрохимическим механизмом коррозии. К процессу коррозии, всегда протекающему на границе раздела минимум двух фаз, т. е. по своей природе типично гетерогенному процессу, не следует применять термин гомогенный . Правильнее называть эту теорию коррозии кинетической теорией. [c.493]

    Н. Д. Томашева, Я. М. Колотыркина, Пражека, Бонгофера, Франка, Штерна, Эделану, Окамото и других советских и зарубежных ученых. Явление перепассивации металлов было впервые количественно обосновано Батраковым (1953) и-Томашевым (1954). Колотыркин (1958) впервые Снял полную потенциостатическую кривую и экспериментально доказал, что все переходы металла из одного состояния в другое (рис. 96) можно получить как его поляризацией, так и введением в раствор различных окислителей, обеспечивающих создание соответствующих потенциалов. Он сделал весьма важный для теории пассивности вывод о том, что решающим фактором в установлении того или иного состояния металла является не природа окисляющего агента, а величина потенциала металла. Особенности поведения металлов в условиях их анодной поляризации оказываются, таким образом, тесно связанными с явлениями пассивности и транспассивности. [c.512]


    Экспоненциальная зависимость плотности тока от потенциала электрода в нестационарных условиях была установлена также Я. М. Колотыркипым и сотр. [.305] в случае хрома и других металлов. Колотыркин справедливо рассматривает экспоненциальную зависимость как одно из доказательств адсорбционной природы пассивирующей пленки в данном случае. [c.184]

    Эти исследования, которые в нашей стране особенно интенсивно проводились Я. М. Колотыркиным, Н. Д. Томашовым и В. П. Батраковым, впервые позволили в полной мере оценить роль электродного потенциала в установлении и поддержании пассивного состояния, вскрыть важные закономерности и определить критические потенциалы, соответствующие наступлению и нарушению пассивности у различных металлов и сплавов, а также у их структурных составляющих в различных условиях. На типичных примерах была установлена роль окислителей и показано отсутствие принципиального различия между анодной и химической пассивацией металлов в растворах электролитов (Я. М. Колотыркин). В большой мере благодаря исследованиям советских ученых убедительно показана электрохимическая природа питтинговой коррозии, возникающей при строго определенном критическом потенциале в результате специфической конкуренции между пассивирующими и активирующими анионами вскрыты важные закономерности влия 1ия на развитие этого процесса как внешних электрохимических факторов, так и ряда легирующих элементов в сплаве (Я. М. Колотыркин, И. Л. Розенфельд, Н. Д. Томашов, В. П. Батраков, В. М. Новаковский и др.). Развивается также теория структурной коррозии (В. И. Батраков, И. Маршаков, А. И. Голубев и др.) и теория коррозионного растрескивания под напряжением химически стойких и высокопрочных сталей (А. В. Рябченков, В. В. Романов, В. В. Герасимов, Ф. Ф. Ажогин, С. Г. Веденкин, Н. П. Жук и др.). В самое последнее время возник новый раздел коррозионной науки, посвященный поведению коррозионных систем в условиях радиоактивного облучения. Накоплением данных и первыми теоретическими выводами и обобщениями в этой области советская наука обязана работам [c.234]

    По представлениям, развитым в работах Ю. Эванса, В. А. Каргина, Я. М. Колотыркина, И. Л. Розенфельда, Д. Е. Майна и других ученых, противокоррозионное действие лакокрасочных покрытий обусловливается торможением коррозионных процессов на границе раздела металл—пленка. Это торможение может быть связано с ограниченной скоростью поступления веществ, необходи.мых для развития коррозионного процесса, повышенным электрическим сопротивлением материала пленки, специфическим влиянием адгезии, химическим или электрохимическим воздействием материала пленки на подложку. Таким образом, факторами, определяющими защитные свойства покрытий, являются изолирующая способность, степень локализации активных центров поверхности, эффект ингибирования. Способность покрытий защищать металлы во многом зависит от присутствия или отсутствия в них пигментов и химической природы последних. В зависимости от этого может преобладать тот или иной механизм защиты. [c.159]


Смотреть страницы где упоминается термин Колотыркина природа: [c.465]    [c.231]    [c.37]    [c.574]   
Теоретические основы коррозии металлов (1973) -- [ c.223 , c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Колотыркина



© 2025 chem21.info Реклама на сайте