Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внешние факторы электрохимической коррозии металлов

    Г лава 18 ВНЕШНИЕ ФАКТОРЫ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ [c.341]

    Учебное пособие состоит из двух глав. Первая глава содержит материал по основам металловедения. Даны основные закономерности кристаллизации металла, методы изучения и изменения структуры металла рассмотрены типичные фазовые равновесия в двойных сплавах показана связь диаграмм состояния со свойствами сплавов. Вторая глава посвящена коррозии металлов и методам защиты металлов от коррозии. Дана классификация видов коррозии, описаны методы изучения и оценки коррозии. Рассмотрены теоретические предпосылки электрохимической коррозии, влияние внешних и внутренних факторов на скорость процесса, характерные особенности наиболее распространенных видов электрохимической коррозии. При рассмотрении видов химической коррозии основное внимание уделено газовой коррозии. Среди методов защиты от коррозии выделены варианты электрохимической защиты, а также обработка коррозионной среды. [c.2]


    К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды и условиями коррозии температура, давление, скорость движения среды, внешняя поляризация и др. [c.341]

    Электрохимическая коррозия представляет собой самопроизвольный процесс разрушения металлов и сплавов под влиянием внешних факторов, сопровождающийся появлением электрического тока. Согласно теории электрохимической коррозии, катодные и анодные участки микроэлементов пространственно разделены. Следовательно, поверхность металлов обладает электрохимической гетерогенностью, т. е. разные участки ее имеют неодинаковые электродные потенциалы. Электрохимическая гетерогенность поверхности металлов вызывается присутствием в металле электрохимически положительных примесей, структурных составляющих сплавов, де- [c.295]

    В большинстве случаев протекание электрохимической коррозии характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла, что приводит к неравномерному или местному коррозионному разрушению металлической поверхности. На процессы электрохимической коррозии металлов существенно влияют как внутренние, так и внешние факторы. К внутренним факторам следует отнести термодинамическую устойчивость металла, состояние его поверхности, структурную неоднородность, влияние напряжений и др. К внешним факторам относятся факторы, связанные с составом коррозионной среды и условиями коррозии (температура, скорость движения среды, давление и др.). [c.318]

    К опасным видам местной электрохимической коррозии металлов относятся контактная, щелевая, точечная (питтинговая), межкристаллитная и коррозионное растрескивание. Контактная коррозия металлов уже рассмотрена нами во внешних факторах электрохимической коррозии металлов, а коррозионное растрескивание — во внутренних факторах электрохимической коррозии. Остальные виды местной электрохимической коррозии тоже уже упоминались в тексте, но требуют более подробного описания. [c.414]

    К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды п условиями коррозии температура, давление, скорость движения, внешняя поляризация и др. Важным показателем является величина pH среды, которая определяет механизм катодной реакции и состав продуктов коррозии (диаграммы Пурбе). Для нейтральных растворов важен ионный состав, который непосредственно влияет на стадийность процесса коррозии и на свойства продуктов коррозии, [c.24]


    Анализируя литературные источники и производственные данные (в частности, ОГКМ, АНК "Башнефть", ОАО "Татнефть") о применении конструкционных материалов для оборудования и трубопроводов, работающих в сероводородсодержащих средах, можно сделать вывод о том, что коррозия углеродистых сталей в таких условиях неотвратима, поскольку образующиеся продукты коррозии не способствуют наступлению пассивного состояния металла ни при каких комбинациях внешних и внутренних факторов. В связи с отмеченным, действенным направлением по повышению долговечности конструкций может быть применение коррозионно-стойких материалов и покрытий, предотвращающих или снижающих интенсивность воздействия рабочих сред за счет рационального использования электрохимических характеристик материала подложки и покрытия, а также барьерного эффекта. [c.27]

    Глава XI. Внешние факторы электрохимической коррозии металлов [c.5]

    К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с природой и характером коррозионной среды и внешними условиями — температурой, давлением, движением раствора и т. д. [c.69]

    Потенциал нулевого заряда металла зависит не только от природы металлов, но и от адсорбции поверхностно активных веществ, которые могут сдвигать потенциал нулевого заряда. Так, адсорбция анионов сдвигает его в сторону более отрицательных значений, а адсорбция катионов — в сторону более положительных значений. С этой точки зрения потенциал нулевого заряда как фактор электрохимической коррозии является переходным между внутренними и внешними факторами. [c.165]

    Непостоянство условий (изменение поверхности электродов и др.) в процессе работы элемента и сложность их учета не позволяют практически использовать приведенные способы расчета, хотя для ряда простых коррозионных систем получено количественное совпадение между рассчитанными и наблюдаемыми скоростями коррозии. На скорость электрохимической коррозии металлов влияет много различных факторов. Все они разделяются на две большие группы внутренние и внешние факторы коррозии. К внутренним факторам относятся термодинамическая устойчивость металла, положение его в периодической системе элементов, структура, наличие внутренних напряжений в металле, состояние поверхности металла и т. п. [c.37]

    XI ВНЕШНИЕ ФАКТОРЫ Глава ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ [c.214]

    Скорость и характер процесса электрохимической коррозии металлов зависят от многих факторов, которые подразделяются на внутренние и внешние. [c.69]

    Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влияние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др. [c.15]

    Важным внешним фактором является температура, поскольку она непосредственно входит во все уравнения электрохимической кинетики, определяет растворимость газов в электролитах и влияет на структуру и свойства продуктов коррозии. При неравномерном распределении температуры на поверхности металла могут возникнуть термогальванические пары, анодами в которых являются более горячие участки. [c.24]

    В целом только комплексный подход, учитывающий электрохимическую природу коррозии, внутреннее строение металла и воздействие внешних факторов, может быть в полной мере плодотворен при анализе причин выхода металлоизделия из строя, правильном выборе материала и оценке его ресурса. К внешним факторам мы относим такие, как чистота отделки поверхности, наличие приложенных извне напряжений, конструктивное оформление данного узла и др. [c.6]

    В промышленности широко применяется нанесение металлических покрытий на поверхность конструкционных материалов для защиты их от коррозии и в декоративных целях. Металлические покрытия не только изолируют металл-основу от коррозионной среды, но в некоторых случаях даже обеспечивают электрохимическую его защиту. По своему виду и сопротивлению воздействию внешних факторов покрытий предмет подобен металлу, который применен в качестве покрытия. [c.192]

    В условиях электрохимической коррозии при отсутствии внешней поляризации на поверхности металла устанавливается коррозионный или стационарный потенциал <р, соответствующий равенству скоростей анодной и катодной реакций. Величина потенциала коррозии зависит от природы металла, состояния поверхности, состава и концентрации электролита, условий диффузии, температуры и других факторов, которые влияют на скорость катодных и анодных реакций. При стационарном потенциале в случае коррозии металла с физически и химически однородной поверхностью плотности тока катодной и анодной реакций равны. В случае локализации катодных и анодных процессов при этом потенциале оказываются равными нулю не плотности токов этих реакций, а силы токов, поскольку величины катодной и анодной поверхностей могут быть различны. В этом случае величина коррозионного разрушения металла характеризуется плотностью тока на анодных участках. [c.11]


    При исследовании электрохимических реакций под тонкими пленками электролитов обычно полагают, что довольно быстро устанавливается стационарный режим и лимитирую-ющие стадии реакций остаются неизменными во времени. Между тем в процессе саморастворения металлов (т. е. в отсутствие внешнего тока) не исключается возможность изменения во времени как скорости электрохимических реакций, так и природы лимитирующего фактора. Последнее связано с накоплением продуктов коррозии во времени и изменением состояния поверхности металла. [c.174]

    Коррозией или разъеданием называется разрушение металла под действием химических и электрохимических факторов, происходящее с поверхности. Обычно процесс коррозии протекает на границе двух фаз металл — внешняя среда. [c.334]

    Электрохимическая коррозия — это разрушение металла при взаимодействии с коррозионной средой (электролитом), соправож-дающееся возникновением в металле электрического тока. Скорость электрохимической коррозии контролируется работой микро-гальванических пар на поверхности металла и зависит от разности потенциалов ее катодных и анодных участков. При электрохимических процессах продукты реакции отводятся с поверхности металла вглубь смазочного материала ионизация атомов металла (анодный процесс) и ассимиляция образующихся в металле избыточных электронов деполяризатором (катодный процесс) протекают в результате пространственного разделения участков реакции не единовременно. Применительно к электрохимической коррозии.говорят о защитных свойствам масла, т. е. о способности его тонкого слоя защищать металл от коррозионного воздействия внешних факторов (прежде всего электролитов). [c.36]

    Если принять, что вследствие кинетического тормсжения электрохимических процессов скорость окисления металла нод адсорбционной пленкой влаги без анодного активатора несравнимо меньше скорости диффузии влаги через защитную пленку (т. е. не вся влага, проникающая через пленку, реализуется на кор])озионные процессы), то для достаточно большого времени (/ оо) толщина адсорбционной плен ги влагн на поверхности металла становится функцией активности воды в коррозионной среде (т. е, относительной влажности воздуха или активности воды в электролите). Другими словами, вследствие конечной величины влагопроницаемости полимерной пленки и относительно небольшой его толщины в результате диффузии влаги устанавливается адсорбционное равновесие поверхности металла с внешней средой. С этой точки зрения естественно было бы ожидать ощутимую скорость коррозии металла под защитными полимерными пленками. Однако в действительности, как показывают эксперименты, не наблюдается однозначной зависимости скорости окисления металла под пленкой от влалаюстп среды или коэффициента влагопроницаемости, так как лимитирующие стадии коррозионного процесса зависят как от внешних, т к и от внутренних факторов. [c.40]

    Одними из наиболее важных и точных методов лабораторных коррозионных исследований являются электрохимические. Чаще всего исследуется изменение потенциала металла в определенной коррозионной среде в зависимости от времени. Из-за относительно большой продолжительности исследований эта зависимость регистрируется обычно с помощью автоматического самописца. Более полную картину коррозионного процесса дают так называемые поляризационные кривые, по которым судят о поляризуемости данного металла, о роли катодных и анодных реакций и влиянии внутренних и внешних факторов на коррозионный процесс. Особенно важное место занимают поляризационные измерения при исследовании пассивирующихся систем (см. ингибиторы коррозии). [c.36]

    Фретинг-коррозией называют [17, 23, 52] разрущение металлов, вызываемое одновременным воздействием на них механического истирания другим металлическим или неметаллическим твердым телом и химического или электрохимического коррозионного процесса. В литературе [17, 225—227] этот вид разрушения металлов называют контактная коррозия , фрикционная коррозия , коррозия трения , окисление при трении , окислительный износ , разъедание при контакте и т. д. В соответствии с условиями, вызывающими фретинг-коррозию в практике, при проведении лабораторных испытаний создаются установки, максимально моделирующие эти условия [225]. Несмотря на то что переменных факторов при этом сравнительно много (природа трущихся поверхностей, среда, внешние факторы, удельное давление, частота циклов и др.), установки для испытаний обычно не слишком сложные. Основу каждой из них составляет приспособление, с помощью которого металлический образец при определенном удельном давлении с некоторой частотой перемещается по поверхности другого твердого тела. Вопрос о подводр коррозионной среды решается в разных случаях по разному в зависимости от свойств среды. В частности, при испытаниях в атмосферных условиях приспособление помещают во влажную камеру, при испытаниях в растворах электролитов трущиеся поверхности периодически смачиваются раствором. [c.138]

    При рассмотрении электрохимической коррозии выделяют влияние на скорость растворения внутренних, ирисущих металлу, факторов и внешних факторов, относящихся к коррозионной среде. К внутренним относятся факторы, связанные с природой металла, его составом, структурой, состоянием поверхности, напряжениями и др. Важнейшей характеристикой природы металла являются его термодинамическая устойчивость и способность к кинетическому торможению анодного растворения (пассивация). Имеется определенная связь между положением металла в Периодической системе элементов Д. И. Менделеева и их коррозионной стойкостью. Для металлических сплавов на основе твердых растворов характерно скачкообразное изменение коррозионных свойств при концентрациях, равных гг/8 атомной доли более благородного компонента (правило Таммана), в связи с образованием плоскостей упорядоченной структуры, обогащенных атомами благородного компонента. Правило Таммана было подтверждено на ряде твердых растворов, а также иа технических пассивирующихся сплавах  [c.23]

    На скорость, вид и характер развития электрохимической коррозии влияет ряд внешних и внутренних факторов. К внешним факторам можно отнести такие, как pH среды и температура среды, состав и концентрация растворов, концентрация растворенного кислорода, скорость относительного движения среды. Внутренними факторами, оказывающими существенное влияние на скорость коррозии металлов и сплавов, являются их термодинамическая неустойчивость, положение металлов в таблице Менделеева, тип и струьпура сплава и механический фактор. Под механическим фактором понимается воздействие на материал механических нагрузок — постоянных или периодических, внешних или внутренних напряжений. Механический фактор, усиливая термодинамическую нестабильность металла и сплава, может привести к разрушению сплошности защитных пленок на его поверхности. К таким видам коррозии относится коррозия под напряжением, которая возникает при совместном действии на металл постоянных растягивающих напряжений и коррозионной среды коррозионная усталость, возникающая при одновременном воздействии среды и периодического или знакопеременного механического воздействия. На устойчивость металла к корро-зионно-механическим повреждениям оказывает влияние ряд дополнительных факторов. Это технологические и конструкционные особенности деталей и изделий, условия их эксплуатации, такие факторы, как температура и перемешивание коррозионной среды и аэрация. [c.55]

    Принцип действия. Поскольку коррозия мегшшов под действием внешних факторов имеет, главным образом, электрохимическую природу, то механизм действия защитных присадок сводится к следующим процессам торможению анодного и катодного коррозионных хфоцессов разрушения металлов, вытеснению воды (электролита) с поверхности металла и удержанию воды в объеме нефтепрод таа. Предотврашть коррозию можно также путем формирования на поверхности металла защитного слоя, препятствующего контакту воды и кислорода с металлом и изменяющего его электрохимический потенциал. [c.954]

    Присадки. Вводимые в смазки ингибиторы коррозии препятствуют протеканию электрохимических процессов на поверхности металла под воздействием внешней среды, а противокоррозионные присадки не допускают химического воздействия коррозионно-агрессивных компонентов смазки на поверхность металла. Выбор присадок зависит от многих факторов, среди которых важными являются условия применения смазок, состав металла и др. Для защиты черных металлов от химической коррозии используют сульфиды и дисульфиды. Для защиты свинца от действия аминов или свободных органических кислот применяют фосфиты и диалкилдитиофосфаты, для защиты меди медных сплавов — производные бензотриазола и меркаптобен-зотриазола. Противокоррозионные присадки, защищающие металл от химической коррозии, в условиях электрохимических процессов могут усиливать коррозию металла. [c.328]

    Практическое использование электрохимических принципов защиты от коррозии требует знания кинетики анодного и катодного процессов на металлах и влияния на нее внутренних и внешних факторов в широкой области потенциалов между крайними значениями равновесных потенциалов термодинамически возможных в системе металл — раствор анодных и катодных реакций. Как следует, например, из рис. 1, при протекании процесса в области перепассивации (фв), когда для защиты от коррозии целесообразно смещать потенциал коррозии в сторону отрицательных значенйй, не любое торможение катодной реакции приведет к подавлению коррозионного процесса (см. кривые ф 1 и ф°/1/). Без знания границ устойчивого пассивного состояния защитить металл невозможно. [c.10]

    Во многих случаях коррозии металлов вполне допустимо рассматривать корродирующую систему как двухэлектродный гальванический элемент, в котором один электрод является анодом, а другой — катодом. Однако в действительности коррозионная система содержит больше двух электродов и является многоэлектродной. Даже вполне определенная двухэлектродная система в условиях коррозии становится системой многоэлектродной под влиянием ряда внешних факторов коррозии (различная степень доступа кислорода к отдельным участкам поверхности металла, различная скорость движения электролита и т. п.). С электрохимической точки зрения поверхность металла, например стального образца, представляет. целую систему короткозамкнутых электродов, имеющих различные потенциалы (кристаллиты основного металла, карбид железа, включения серы, фосфора, кремния, низкоплавкая эвтектика по границам зерен и др.). При соприкооно.вении с коррозионной средой поверхность металла дифференцируется на анодные и катодные участки и важно знать, какие из электродов данной многоэлектродной системы являются анодами и какие — катодами. [c.33]

    Коррозией металлов называется их разрушение под воздействием химических реакций или электрохимических процессов. В качестве примеров коррозии можно привести обычное ржавление труб, уложенных на поверхности земли, в каналах или внутри помещений. Разрушение металла начинается с поверх-аости и в зависимости от различных факторов быстро или медленно проникает вглубь. Коррозионное разрушение сопровождается изменением внешнего вида поверхности металла. [c.63]

    Металлы обладают электрической проводимостью, в десятки, и сотни раз более высокой, чем проводимость электролитов. Поэтому (за исключением тех особых случаев коррозии,. когда имеется очень большая протяженность конструкции по сравне-нию с ее сечением, или случаев плохого контакта катодных № аюдных участков во ннешней цепи) можно в общем считать,, что коррозионные системы не имеют заметного сопротивления во внешней цепи. Таким образом, роль омического фактора при электрохимической коррозии, как правило, целиком определяется сопротивлением внутренней цепи — электролита. [c.168]

    Влияние внешней среды. Коррозионные процессы представляют собой сложную совокупность физико-химических явлений, исследование которых требует знания как внутренних факторов, зависящих от природы металла, так и характеристики агрессивно действующей среды, ее кислотности, наличия кислорода, присутствия ионов, которые могут затормозить или, наоборот, ускорить коррозию, и т. д. Природа внутренних факторов (в первую очередь возникновение электродного потенциала и его влияние на коррозионное поведение металла) была объяснена выше. К этому следует добавить способность некоторых металлов (алюминия, хрома, марганца и др.) образовывать на своей поверхности пленки различного химического состава, обычно окисные, обладающие защитными сйойствами. Это явление известно под названием пассивирования. Металлы (например, алюминий и хром), покрывающиеся пленками самопроизвольно, называют самонассивирующи-мися. В некоторых случаях работа гальванических элементов способствует образованию подобных пленок на поверхности анодов, что приводит, естественно, к торможению электрохимического процесса. [c.184]


Смотреть страницы где упоминается термин Внешние факторы электрохимической коррозии металлов: [c.190]    [c.292]    [c.33]    [c.33]    [c.30]    [c.459]   
Смотреть главы в:

Курс теории коррозии и защиты металлов -> Внешние факторы электрохимической коррозии металлов

Курс теории коррозии и защиты металлов Изд2 -> Внешние факторы электрохимической коррозии металлов




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов, электрохимическая

Коррозия электрохимическая

Факторы внешние

Факторы электрохимические

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте