Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан коррозия

    Чтобы предупредить подобные аварии, в хлорной промышленности для изготовления аппаратов широко применяют свинец, титан, специальные сорта стали, графит, стекло и фарфор. В качестве защитного покрытия стальных изделий в последние годы стали применять полиэтилен, фторопласт, фаолит, винипласт и другие полимерные материалы. Для уменьшения коррозии стальной аппаратуры и трубопроводов Необходима осушка хлора, углеводородов и хлорпроизводных продуктов. [c.117]


    Разновидностью межкристаллитной коррозии металлов является ножевая коррозия (рис. 3. 2з) — коррозия местного вида, возникающая в сварных конструкциях в очень узкой зоне на границе сварной шов — основной металл при сварке хромоникелевых сталей с повышенным содержанием углерода, даже легированных титаном или ниобием. В узкой околошовной зоне перегретого почти до расплавления металла (порядка 1300° С и выше) растворяются карбиды титана или хрома. При последующем быстром охлаждении (при контакте с ненагретым металлом) этой зоны карбиды титана или ниобия не успевают выделиться вновь и углерод остается в твердом растворе. Последующее достаточно длительное пребывание этой зоны при температурах 600—750° С, например, при сварке двухсторонним швом, приводит [c.424]

    Благодаря исключительно высокому сопротивлению коррозии титан — прекрасный материал для изготовления химической аппаратуры. Но главное свойство титана, способствующее все большему его применению в современной технике, — высокая жаростойкость как самого титана, так и его сплавов с алюминием и другими металлами. Кроме того, эти сплавы обладают жаропрочностью— способностью сохранять высокие механические свойства ири повышенных температурах. Все это делает сплавы титана весьма ценными материалами для самолето- и ракетостроения. [c.649]

    Изучалось поведение титана в контакте с другими металлами. В солянокислых средах, содержащих сероводород, следует избегать контакта титана с углеродистой сталью и латунью в сопряжении с титаном коррозия этих металлов усиливается. Контакт титана с нержавеющими сталями не опасен. Коррозионное поведение самого титана в контакте с вышеперечисленными материалами не меняется. [c.76]

    В последнее время в условиях газовой коррозии находят применение новие конструкционные металлы и сплавы, такие, как титан, цирконий, молибден, ниобий и др. [c.143]

    Титан. Коррозия в различных средах [c.437]

    Шварц Г. Л. К вопросу межкристаллитной коррозии нержавеющих сталей, стабилизированных титаном. — Коррозия и борьба с ней, 1952, с. 27— [c.118]

    Этот Процесс весьма неприятен, так как при умеренно высоких температурах, при которых резины из фторкаучуков еще сохраняют свои эластические свойства и могут длительно эксплуатироваться, находящийся в контакте с ними металл (особенно титан и алюминий) подвергаются сильной коррозии под действием фтористого водорода. [c.506]

    Добавка к титану 2%, Рс1 снижает скорость коррозии этого сплава в 10"/ о-1ЮЙ кипящей серной кислоте в 156 раз по сравнению с нелегированным титаном. Еще больший эффект пассивируемости дает легирование палладием сплавов титана, содержащих молибден и хром (рис. 29). [c.67]


    В растворе сульфата железа в серной кислоте ни одна из сталей 26—1S не оказалась устойчивой к МКК. Неустойчивость к МКК в этом растворе, а также в азотной кислоте отмечена и для обычных ферритных нержавеющих сталей, стабилизированных титаном. Коррозия в этом случае обусловлена селективным растворением карбидов или нитридов титана в среде с высоким окислительным потенциалом. [c.167]

    Титан неустойчив в растворах плавиковой кислоты низких концентраций, а по мере повышения концентрации кислоты скорость коррозии титана еще более возрастает. На рис. 190 пока- [c.282]

    Независимо от электрохимической природы металлов, наличие окисных пленок на их поверхности (например, на титане, никеле, олове) или диффузионного контроля коррозионного процесса (например, у олова) значительно понижает восприимчивость металлов к действию ингибиторов коррозии, так как ингибиторы практически не адсорбируются на окисленной поверхности металлов, а также не влияют на скорость диффузионных процессов. [c.349]

    Из данных табл. 66 видно повышение стойкости сталей к точечной коррозии с увеличением содержания в них хрома. Из данных таблицы также следует, что углерод, титан и ниобий снижают стойкость хромоникелевой стали к точечной коррозии, равно как и введение марганца при одновременном снижении содержания хрома и никеля, в то время как Мо значительно повышает стой- [c.418]

    Действие добавок объясняется их адсорбцией на поверхности титана с последующей частичной хемосорбцией, что создает защитный, обусловливающий пассивность, слой. Установлено также, что присутствие свободного хлора резко снижает скорость коррозии титана в соляной кислоте. Так, в непрерывно насыщаемой хлором соляной кислоте титан стоек при 20° С при всех ее концентрациях, при 60°С —до 20%-ной и при 90°С—до 10%-пой концентрации (рис. 189). [c.282]

    Титан обладает хорошей стойкостью к окислению до 650° С, однако наличие иа поверхности хлоридов ускоряет коррозию. Некоторые высокопрочные сплавы титана подвержены растрескиванию при температурах выше 315° С, однако при эксплуатации разрушений подобного типа не наблюдается. [c.216]

    Некоторые исследователи [370] отмечали, что в контакте с неметаллическими материалами склонность титана к щелевой коррозии увеличивается. Например, наблюдалась интенсивная щелевая коррозия титана при контакте с фторопластом через 20 дней после погружения в кипящий 23%-ный раствор Na l (pH 2). При контакте с титаном коррозия не наступала. [c.145]

    Для изготовления машин, аппаратов, трубопроводов, запорной и крепежной арматуры, работающих под высоким давлением, применяют высококачественные легированные стали, содержащие хром, никель, вольфрам, ванадий, титан и др. Для аппаратов, работающих под высоким давлением, применяют в основном хромоникелевую, хромованадиевую и молибденовую стали. Хромоникелевые стали (20ХН, 50ХН, 12ХНЗ и др.) идут на изготовление аппаратов и машин, работающих под высоким давлением и при высоких температурах (колонны синтеза и их насадки, цилиндры высокого давления газовых компрессоров и др.). Эти стали обладают повышенной стойкостью к водородной и карбонильной коррозии. [c.93]

    Металлический титан плавится при 1665 °С плотность его равна 4,505 г/смЗ. Титан — довольно активный металл стандартный электродный потенциал системы Ti/Ti + равен —1,63 В, Однако благв-даря образованию па поверхности металла плотной защитной пленки титан обладает исключительно высокой стойкостью против коррозии, превышающей стойкость нержавеющей стали. Он не окисляется на воздухе, в морской воде и не изменяется в ряде агрессивных химических сред, в частности в разбавленной и концентрированной азотной кислоте и даже в царской водке. [c.649]

    В растворах соляной кислоты титан корродирует с выделением водорода. При определенных концентрациях кислоты и температурах, в зависимости от доступа кислорода в коррозионную среду, титан может переходить из пассивного состояния в активное (рис. 188). В растворах соляной кислоты очень низких концентраций титан способен пассивироваться за счет образования защитных гидридпых пленок. Так, при 60 " С он устойчив в 75 растворах концентрации не выше 3%, а при 100° С —не выше 0,5% H I. С увеличением концентрации и повышением температуры соляной кислоты скорость коррозии титана увеличивается. [c.282]

    Полагают, что причиной ножевой коррозии является то, что основной металл в участках, непосредственно прилегающих к сварному шву, подвергается при иаложепии первого сварного шва нагреву до 1200—1300° С. При этом происходит переход карбидов титана н ниобия в твердый раствор. При охлаждении стали с температуры, превышающей предел растворимости этих карбидов, фиксируется структура ау-стеннта, содержащего в твердом растворе титан и ниобий. При наложении [c.167]

    Методом борьбы с ножевой коррозией сварных соедн[1ении хромоникелевых сталей является легирование их титаном и иио-бием в количествах, превышающих известные соотноикмшя. А. И. Акулов рекомендует следующие соотношеиия  [c.168]


    В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались межкристаллитной коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия. [c.278]

    Интенсивность корозии титана в соляной кислоте можно уменьшить добавкой в раствор замедлителей коррозии— окислителей (азотная кислота, хромовая, К2СГ2О7, КМПО4, П2О2, О2 и др.), а также солей некоторых металлов (меди, железа, платины и др.). При этом потенциал новой системы титан— раствор приобретает более положительное значение. В таком окисле, как ТЮг, число дефектов решетки на границе окисел — газ настолько мало, что достаточно незначительного количества кислорода, чтобы их ликвидировать. Вновь появляющиеся в процессе растворения дефекты благодаря присутствию кислорода будут устраняться, т. е. процесс пассивации будет преобладать над процессом растворения титана. [c.282]

    Сплавы титана, содержащие алюминий и хром, обладают в 3 и. растворе соляной кислоты при 15° С и в I fi. растворе серной кислоты при 50° С меньшей коррозионной стойкостью, чем нелегированный титан с повыщеннем содержания в этих сплавах хрома и алюминия скорость их коррозии увеличивается. Наиболее эффективно способствуют повышению коррозионной стойкости титана в ряде агрессивных растворов добавки Мо, Та, Nb, [c.286]

    В отличие от сплавов Т1 — Мо, сплавы Т1 — Та имеют достаточно высокую коррозионную стойкость и в окислительных средах. Добавка меди к титану в количестве 2% значительно снижает скорость коррозии тнтана в серной кислоте. Дальнейшее повышение содержания меди не влияет па коррозионную стойкость сплава Т1 — Си, а при содержании меди свыше 5% даже 1а6,чюдается снижение коррозионной стойкости сплава. [c.288]

    Одним из важнейших качеств титана является его высокая коррозионная стойкость во многих агрессивных средах, обусловленная образованием на его поверхности тонкой инертной пленки из диоксида, взаимодействующего с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан и водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если и происходит коррозия титана, то почти всегда она протекает равномерно, без локализации по точкам, язвам или границам зерен. Наряду с Э1ИМ ценность титана как конструкционного материала обусловлена его значительной удельной прочностью (отношение прочности к плотности), которая у титана больше, чем у любого другого металла. [c.274]

    Сплавы Т1— N1 в разбавленных растворах серной кислоты прн еодержанпи никеля 3--5% имеют более высокую коррозионную стойкость, чем титан, а сплавы, содержащие 0,5 и 1,26% N1, 1н дут себя хуже. При этом увеличение концентрации серной кислоты от до 4 н. почти не влияет па коррозионную стойкость сп,1аво15 с 3 и 5% N1, по увеличивает скорость коррозии сплавов с 0,5 и 1,26% N1. [c.288]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Присадка марганца п железа к титану уменьшает коррози-оппую сто11Кос1ь последнего в растворах серной и соляной кнслот. [c.288]

    Особенности конструирования элементов корпусов сосудов из аустенитных сталей. Основным технологическим приемом изготовления корпусов сосудов из аустенитных сталей является сварка. При конструировании сварных корпусов необходимо учитывать дефицитность и высокую стоимость аустенитных сталей (в 1,5— 3,9 раза дороже качественно конструкционной стали в зависимости от состава и сортамента). Из высоколегированных сталей следует изготовлять лишь те элементы корпуса, которые подвержены воздействию агрессивной среды, выполняя остальные детали из углеродистых сталей но ГОСТ 380 -71. При перегреве в процессе сварки возможно выгорание легирующих элементов и образование карбидов хрома с последую[цими потерями антикоррозионных свойств и появлением ослонности к межкристаллитной коррозии. Для исключения последней в сварных конструкциях используют аустенитные стали, дополнительно легированные титаном, который связывает карбиды хрома. [c.115]

    Очень важное значение имеет правильный подбор конструкдионных материалов. Имеется ряд высоколегированных сталей, содержащих хром, марганец, никель, титан, которые хорошо противостоят действию различных агрессивных сред. Ввиду того, что высоколегированные стали дороги, аппаратуру иногда изготовляют двухслойную внутренний слой делают из высоколегированной стали, а наружный — из углеродистой. Широко применяют стойкие к коррозии материалы неорганического происхождения, например, диабазовые плитки, фарфор, стекло, керамику органического происхождения, [c.174]


Смотреть страницы где упоминается термин Титан коррозия: [c.690]    [c.38]    [c.65]    [c.249]    [c.13]    [c.115]    [c.421]    [c.151]    [c.216]    [c.227]    [c.283]    [c.284]    [c.285]    [c.290]    [c.405]    [c.809]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.18 , c.19 , c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия титана и его сплавов

Высокотемпературная газовая коррозия титана под покрытиями

Игнатову 3. И. Корнилова, Э. М. Лазарев Структурные и кинетические исследования окисляемости новых титановых сплавов на основе к-титана и их защита от газовой коррозии

Контактная коррозия титана

Коррозия под напряжением титана и его сплавов

Коррозия сварных соединений титана

Коррозия сварных соединений титана и его сплавов

Коррозия сплавов меди, никеля и титана

Коррозия титана и его сплавов

Коррозия титана и его сплавов при различных способах соединения и в напряженном состоянии

Коррозия титана при высоких температурах

Нарушение пассивного состояния и локальная коррозия сплавов титана

Ножевая коррозия сварных соединений хромоникелевых сталей, стабилизированных титаном

Питтинговая коррозия титана

Питтинговая коррозия титана и его сплавов

Причины питтинговой коррозии вблизи ЕкоР и щелевой коррозии титана

Специфические виды коррозии титана

Специфические виды коррозии титана знойнее поведение титана в напряженной состоянии

Стойкость в растворах хлоридов и питтинговая коррозия титана

Титан и его сплавы коррозия газовая

Титан коррозия биологическая

Титан коррозия, общие вопросы

Титан потенциалы коррозии

Титан щелевой коррозии

Титан, влияние его содержания коррозию сплавов никеля с молибденом хромистой стали

Титан, влияние его содержания точечную коррозию нержавеющих

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний

Щелевая коррозия титана и его сплавов

Электрохимический метод защиты металлов Фокин, В. А. Тимонин. Защита титана от коррозии в концентрированных растворах соляной кислоты при повышенных температурах



© 2025 chem21.info Реклама на сайте