Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон дуализм

    При прохождении потока электронов (или других микрочастиц) через дифракционную решетку интенсивность этого потока в одних направлениях увеличивается, а в других уменьшается в соответствии с уравнением де Бройля. Интенсивность потока электронов определяет вероятность попадания электрона в различные участки экрана. Таким образом, распределение вероятности пребывания микрочастиц в пространстве описывается закономерностями, аналогичными закономерностям волнового движения. В этом проявляется двойственная корпускулярно-волновая природа микрочастиц — их корпускулярно-волновой дуализм. Волны де Бройля иногда называют волнами вероятности. [c.25]


    Уже было упомянуто, что в этих реакциях перенос электронов происходит по туннельному механизму это означает, что электрон не преодолевает энергетического барьера, а просачивается через него. Туннельный эффект объясняется корпускулярно-волновым дуализмом частиц на основе соотношения неопределенности Гейзенберга, если рассматривать электрон как волну де Бройля (подробнее см. в учебниках атомной физики). В данном случае возможность туннельного перехода [c.203]

    Волновая природа электронов была установлена, когда Дэвиссон и Джермер показали, что электроны дифрагируют на металлической фольге точно так же, как и рентгеновские лучи. Корпускулярно-волновой дуализм, обнаруживаемый электронами, присущ всем материальным объектам. Для больших объектов (например, бейсбольного мяча) корпускулярные свойства оказываются настолько преобладающими, что волновые свойства остаются незаметными. [c.376]

    В рассматриваемом диапазоне свет проявляет не только волновые свойства (дифракция, интерференция, поляризация и др.), но и квантовые или корпускулярные, такие как фотоэффект, излучение и поглощение атомов и др. В то же время движущиеся частицы проявляют волновые свойства (дифракция электронов). Этот корпускулярно-волновой дуализм материи лежит в основе квантовой механики. [c.91]

    Описание движения электрона с помош,ью волновой функции вовсе не означает какой-то корпускулярно-волновой дуализм электрона . Электрон —это частица вполне определенных размеров. Его волновая характеристика — это характеристика его движения, его локализации в том или ином месте пространства. Колеблется не электрон, а вероятность его нахождения. Иными словами, распространение электронной волны — это изменение вероятности появления электрона на фронте этой волны. Сама эта вероятность равна квадрату модуля значения волновой функции г1з , т. е. ее амплитуды в рассматриваемой точке с координатами X, у я 2. Точнее, величина 1113 1 — плотность вероятности, а сама вероятность — это произведение плотности вероятности нахождения электрона на объем рассматриваемого пространства. Так, вероятность нахождения электрона вблизи точки с координатами X, у, г в объеме йУ=йх-йу с1г, заключенном между координатами ж и (х+с1х), у и (у+(1у), г и [г+йг), равна г 5 -й У. [c.52]

    Современная теория химической связи, теория строения молекул и кристаллов базируется на квантовой механике молекулы как й атомы, построены из ядер и электронов, и теория химической связи должна учитывать корпускулярно-волновой дуализм микрочастиц. До применения методов квантовой механики к химии не удавалось создать непротиворечивую теорию химической связи. Ее фундамент был заложен в 1927 г. Гейтлером и Лондоном. Выполнив на основе квантовой механики расчет свойств молекулы водорода, они показали, что природа химической связи электрическая, никаких особых сил химического взаимодействия помимо электрических не существует. Действующие в молекуле между ядрами и электронами гравитационные и магнитные силы пренебрежимо малы по сравнению с электрическими. [c.51]


    Главной особенностью квантовой механики является ее вероятностный статистический характер она дает возможность находить вероятность того или иного значения некоторой физической величины. Объясняется это волново-корпускулярным дуализмом микромира, т. е. микрообъекты обладают как корпускулярными, так и волновыми свойствами. В отличие от классической физики в квантовой механике все объекты микромира (электроны, атомы, молекулы и др.) выступают как носители и корпускулярных и волновых свойств, которые не исключают, а дополняют друг друга. Не представляет труда обосновать объективность волново-корпускулярно-го дуализма для световых квантов — фотонов. Так, фотоэффект Столетова и эффект Комптона доказывают корпускулярную природу видимого и рентгеновского излучений, а интерференция и дифракция — волновую природу света. Потому для фотонов легко показать единство волны и корпускулы. Действительно, из формул [c.36]

    Электроны в связанной форме являются частицами, поведение которых в значительной мере определяет химические свойства вещества. Говорят даже, что химия —это физика электронных оболочек . При исследовании именно этих элементарных частиц был установлен так называемый корпускулярно-волновой дуализм материи. Рассмотрим сначала некоторые свойства электронов, в которых проявляется их корпускулярная природа. Прежде всего отметим, что можно определить заряд и массу электрона интересны в этом отношении и методы получения электронов. К последним относятся термоэмиссия (при высокой температуре электроны сравнительно легко покидают решетку некоторых металлов, в особенности щелочных) и ударная ионизация. [c.26]

    Главный тезис квантовой механики — микрочастицы имеют волновую природу, а волны — свойства частиц. Применительно к электрону можно сказать, что это такое образование, которое ведет себя и как частица, и как волна, т. е. он обладает, как и другие микрочастицы, корпускулярно-волновым дуализмом (двойственностью). С одной стороны, электроны, как частицы, производят давление, с другой стороны, движущийся поток электронов обнаруживает волновые явления, например дифракцию электронов. Дифракция электронов широко используется при изучении строения вещества. [c.30]

    Следует отличать содержание соотношения В. Гайзенберга от данного им толкования. Действительно, невозможен опыт, позволяющий одновременно точно измерить координату и импульс частицы. Эйнштейн в последние годы пытался опровергнуть это утверждение. Нельзя, однако, придумать опыт, опровергающий соотношение (XX. 12), которое ограничивает не предел познания, а предел применения понятий волна и частица. Микрообъект сложнее, чем эти возникшие при наблюдении макрообъектов понятия. Дуализм волна—частица—реальное свойство микрообъекта. Дифракция при прохождении электрона через щель возникает потому, что электрон не является частицей, а обладает волновыми свойствами. [c.432]

    Дуализм волна—частица . Новые представления о природе электрона берут свое начало в известной полемике о сущности лучистой энергии, которая велась в течение длительного времени такими выдающимися исследователями, как Гюйгенс, Ньютон, Юнг и Френель. К началу XX в. считалась установленной волновая природа излучения точно так же, как веком раньше общепризнан был его корпускулярный характер. В 1905 г. для объяснения фотоэлектрического эффекта Эйнштейну пришлось вновь вернуться к представлению о фотонах как световых частицах. Таким образом, с новой остротой встал вопрос что такое свет—волны или частицы  [c.162]

    ЧТО электрон как таковой не ( ществует в ядре, в соответствии с нейтрон-протонной моделью, распространение этого подхода к проблеме бета-излучения было многообещающим. На первый взгляд такой подход может показаться не слишком разумным, так как следовало бы ожидать, что свойства волны будут сильно отличаться от свойств частицы. Следовательно, если нас не смущает образование фотона, то все же трудно представить себе подобный процесс для электрона. Однако, вспоминая о нашем подходе к дуализму волна — частица в квантовой механике, нечего особенно удивляться эквивалентному подходу и к данной проблеме. [c.404]

    Световой квант был назван А. Эйнштейном фотоном, и, следовательно, уравнения e = ftv или е=йо) выражают энергию фотона. Таким образом, намечается некоторый синтез волновых и корпус-К лярных идей и вместе с тем обнаруживается тот удивительный дуализм объектов микромира, который не имеет практических аналогий в макромире. Фотон характеризуется волновыми свойствами (частотой), но в то же время он имеет и признаки частицы. Подтверждение этому было получено в 1922 г. в опытах Комптона, исследовавшего взаимодействие квантов рентгеновского излучения (фотонов) с электроном. При столкновении фотона с электроном оба они ведут себя как частицы и их траектории можно рассчитать по законам механики. [c.27]

    Современная теория строения атома прежде всего исходит из представлений о корпускулярно-волновом дуализме электрона и описывает его состояние четырьмя параметрами — квантовыми числами. Предельное число электронов, которое может заселять одну орбиталь, равно двум, что соответствует принципу Паули. Электроны располагаются на одинаковых орбиталях так, чтобы суммарный спин был максимален. [c.60]


    Кроме того, на электронные конфигурации атомов влияют до сих пор еще во многом неясные внутренние свойства электронов их дуализм как частиц и волн, спиновые характеристики и, в частности, правила Хунда, а также распределение в пространстве а- и р-спиновых плотностей и сопровождающих их магнитных полей очень важно существование добавочных внутренних максимумов радиальных зарядовых плотностей, кроме главного максимума, отвечающего первому квантовому числу данного электрона. Существенна и способность электронов к возбуждению и статистическому распределению одновременно на разных уровнях энергии, а также конфигурационное взаимодействие, которое требует принимать во внимание всю сложность коллективных межэлектронных взаимовлияний. [c.8]

    Корпускулярно-волновой дуализм утвердился вначале в учении о природе электромагнитного излучения, механизм которого связан с перескоком электронов с более удаленных от ядра атома стационарных орбит на более близкие. При этом происходит излучение, а при перескоке в обратном направлении — поглощение фотонов, энергия которых Е определяется уравнением Планка  [c.46]

    Например, наблюдавшаяся уже в 1927 г. дифракционная картина, сопровождавшая прохождение электронов через кристаллическую решетку. Французский физик Луи де Бройль (впоследствии — нобелевский лауреат) первым высказал предположение о дуализме электрона. [c.465]

    Корпускулярно-волновой дуализм есть общее свойство материи, но обнаруживается оно только у микрообъектов. Для электрона, масса которого равна 9,1 г, по уравнению (П.2) можно определить Я,. Она равна яаЮ- см, т. е. соизмерима с размерами атомов, благодаря чему осуществляется дифракция электронов, тогда как для частицы большой массы, например мячика в 50 г, вращающегося со скоростью 25 см/с, см, т. е. Я несоизмеримо меньше размера мячика и волновая природа его не может быть обнаружена эксперимситалыю. Поэтому во внимание принимаются только волновые свойства микрочастиц. [c.31]

    Исследование природы химической связи является центральной проблемой всей теоретической химии Изучение строения и реакционной способности вещества дает богатую информацию о характере взаимодействия между атомами в молекуле, способствуя все более углубленному моделированию химических процессов Обобщение экспериментальных данных приводит на определенных этапах развития химии к теоретическим концепциям, которые наряду с чисто познавательным аспектом имеют и громадное практическое значение, так как позволяют вести исследование более целенаправленно Однако только с созданием аппарата квантовой механики — науки о движении микрочастиц (атомов, ядер, электронов и т д ) — ранее существовавшие теории химической связи получили естественное объяснение Современная квантовая химия является частью квантовой механики, в основе которой лежит представление о корпускулярно-волновом дуализме микрочастиц Если раньше электрон рассматривался как точечная частица, положение и скорость которой в принципе можно точно установить, то в дальнейшем было установлено, что электрон может обладать также и волновыми свойствами (например, мы можем при определенных условиях наблюдать дифракцию электронов) [c.56]

    Такой анализ справедлив для любого валентного сектора. Возьмем, например, пятый сектор. По одному счету он после-четвертый, а по другому — предшестой. На спиральной модели системы дуализм восьмой группы заключается в том, что в ряду роста положительной валентности (электронодонорно-сти) он замыкает виток следовательно, число недостающих электронов (электроноакцепторность), а значит, и отрицательная валентность, равны нулю. В итоге 8 + 0 = 8. Все в соответствии со сквозной закономерностью. [c.184]

    Из-за поляризации подобные связи называют частично ионными и здесь проявляется одна из издержек квантовой химии, на которой необходимо хотя бы очень кратко остановиться. Еще Гайт-лер и Ферми убедительно показали, что чисто ковалентных, так же как и чисто ионных связей, как правило, не бывает. Но из этого не следует, что имеет физический смысл определение в процентах ( ) степени ковалентности или степени ионности (хотя это нашло сейчас широкое распространение в литературе по химии и физической химии, в том числе и полимеров). Прямолинейное введение процентов ковалентности столь же недопустимо, как толкование квантово-волнового дуализма в том духе, что электрон на х% является частицей, а на у% — волной ху = 100). [c.19]

    Подобные попытки наглядного описания (в отличие от некоторых моделей, рассматриваемых ниже и сводимых к оптико-механи-ческой аналогии Гамильтона) некорректны и недопустимы квантово-волновой дуализм — это один из фундаментальных фактов, лежащих в основе квантовой механики. Таким же фундаментальным фактом является и обмен спинов, т. е. обменное взаимодействие, лежащее в основе образования гомеополярной (т. е. ковалентной) связи. Поэтому не может существовать долей того, что принципиально неделимо существует, однако, вполне определенная вероятность обнаружить валентные электроны в состоянии обменного или кулонова (ионного, гетерополярного) взаимодействия. Вот эти вероятности и трансформируют в злополучные проценты. Есть прямой метод оценки этих вероятностей — аннигиляция позитронов, — основанный на том, что время жизни позитрона до аннигиляции, или способность его к образованию позитрония (т. е. е+е аналога атома водорода), зависит от состояния электрона, с которым он взаимодействует [25, с. 40]. [c.20]

    Несмотря на то что мы пока не решили, каким образом выразить волновой характер электрона, но тем не менее уверены в том, что это должно быть сделано с помощью волнового уравнения. Это делает необходимым использование волновой функции для описания свойств электрона. Для известных форм волнового движения можно дать вполне разумную и полезную физическую интерпретацию волновой функции. Однако какой смысл будет иметь волновая функция частицы, сказать не так легко. Эрвин Шредингер блестяще продемонстрировал возможности волновой механики в этом направлении еще до того, как появилось приемлемое толкование волновой функции. Сейчас может показаться, что волновая функция имеет только математический смысл и никакой физической интерпретации в действительности и не требуется. Это как будто бы подтверждается наличием умозрительных трудностей, связанных с дуализмом волна — частица. Такая точка зрения должна в особенности импонировать тем, кто любую попытку дать физическое описание всем природным процессам считает помехой для развития науки. Однако, безусловно, следует ноддер- [c.45]

    Современная теория химической связи одновременно есть и теория строения молекул и кристаллов. Так же как и теория строения атомов, она базируется на квантовой механике молекулы, как и атомы, построены из Лдер и электронов, и теория химической связи должна учитывать корпускулярно-волновой дуализм микрочастиц. [c.79]

    Гипотеза де Бройля. Началом нового этапа развития теории атома послужили представления Луи де Бройля о двойственной природе " движения микрообъектов, в частности электрона. В 1924 г. он выступил с поразительной по смелости гипотезой, в соответствии с которой корпускулярно-волновой дуализм присущ всем без исключения видам материй. Причем количественное соотношение между волновыми и корпускулярными свойствами атом-но-молеку./1ярных частиц подобно установленному ранее для фотонов, т. е. [c.46]

    Двойственная природа (дуализм) электрона, обладающего свойствами и частицы, и волны, приводит к тому, что его движение не может быть описано определенной траекторией. Траектория размывается, возникает полоса неопределенности, в пределах которой и находится электрон. Чем точнее мы будем пытаться определить нахождение электрона на траектории (его координаты х, у, и г), тем меньше будем знать о его скорости v или импульсе p = nieV, и наоборот, т. е. в любой момент времени невозможно определить и положение в пространстве, и скорость (или импульс) электрона. В этом заключается принцип неопределенности. [c.29]

    Двойственная природа (дуализм) электрона, обладающего свойствами и частицы, и волны, приводит к тому, что его движение не может быть описано определенной траекторией. Траектория размывается, возникает полоса неопределенности, в пределах которой и находится электрон. Чем точнее мы будем пытаться определить нахождение электрона на траекто- [c.37]

    Применительно к электрону можно ki-зать, что он ведег себя и как частиц ц и как волна, т.е. обладает, как и Д1) тие микрочастицы, корпускулярно-волнс)вьш дуализмом (двойственностью). С сличи стороны, электроны как частицы npotjjBO -дят давление, с другой стороны, дь -жу-щи ася поток электронов обнаруживаег волновые явления, например дифракцию электронов. I [c.51]

    Подвижная система л-электронов кратных связей С—С, ответственная за стабильность соответствующих карбокатионов, оказывает столь же эффективное действие на стабильность карбанионов. Вследствие этого разборка по ашшльной, бензильной или пропаргильным связям выигрьплна еще и потому, что получающийся при этом непредельный фрагмент может быть представлен не только как карбокатион, но и как карбанион. Подобный дуализм всегда полезен, поскольку он расширяет область поиска наиболее подходящих вариантов, но особенно часто им пользуются при синтезе целого ряда представителей одного из важнейших классов природных соединений, а именно ациклических изопреноидов.  [c.101]

    Таким образом, химическая связь в ММО описывается на основании волновых свойств электрона (карпускулярно-волновой дуализм электронной материи). [c.62]

    Корпускулярная природа света обнаруживается при взаимодействии его с отдельными молекулами, которые поглощают и испускают свет квантами величины Av. Согласно теории Эйнштейна, кванты света обладают по крайней мере некоторыми динамическими свойствами частиц и известны под названием фотонов. Но идея частицеподобных фотонов не избавляет от необходимости понимать свет как волну, поскольку только волновой теорией можно объяснить явления дифракции и интерференции. Фактически этот дуализм не ограничивается только светом он распространяется и на элементарные частицы вещества, ярким примером чего может служить дифракция электронов  [c.9]

    Функция в уравнении Шрёдингера называется волновой функцией и определяет амплитуду стоячей электронной волны. Физический смысл имеет величина г1й(1ь , равная вероятности нахождения электрона в элементарном объеме = = хйуйг. Таким образом, квантовая механика дает лишь вероятность нахождения электрона в том или ином месте атомной системы. Поэтому такие понятия, как траектория частицы (например, электронная орбита), в квантовой механике не имеют смысла. В соответствии с физическим смыслом сама волновая функция должна удовлетворять определенным условиям, которые называются стандартными. Согласно последним, волновая функция должна быть 1) непрерывной, так как состояние квантовой системы в пространстве меняется непрерывно 2) конечной, т.е. она не должна обращаться в бесконечность ни при каких значениях аргументов 3) однозначной, ибо по смыслу ф есть амплитуда вероятности, а потому для любой данной точки она может иметь только одно значение 4) обращаться в нуль на бесконечности. Кроме того, функция ф должна быть нормированной. Это означает, что суммарная вероятность нахождения электрона в околоядерном пространстве должна быть равна единице, т.е. результат проявления волновокорпускулярного дуализма не ведет к исчезновению электрона. Математически условие нормировки записывается как Jф dv — 1, т.е. суммирование (точнее, интегрирование) ведется по всему объему значений каждой из координат от — оо до + ОС. Из статистической интерпретации волновой функции возникает вопрос, обладает ли волновыми свойствами отдельная микрочастица или они присущи коллективу их. В опытах по дифракции электронных пучков очень малой интен- [c.29]

    Поля распространяются в пространстве в виде волн — световых, звуковых, гравитационных и т. д. Французский ученый Луи де Бройль ввел представление о том, что каждой материальной частице (корпускуле, лат. orpus ula — тельце) соответствует своя волна. Так возникло ныне признанная всеми теория корпускулярно-волнового дуализма (лат. duo — два, dualis — двойной, двойственный). Например, электрон при определенных условиях обнаруживает волновые свойства. Это доказано экспериментально путем дифракции электронов. Созданы электронные микроскопы, позволяющие достигать увеличения во много сотен тысяч раз и дающие возможность изучать строенне мельчайших образований (например, вирусов) и даже молекул. [c.7]


Смотреть страницы где упоминается термин Электрон дуализм: [c.329]    [c.46]    [c.8]    [c.14]    [c.39]    [c.27]    [c.29]    [c.5]    [c.5]    [c.27]    [c.86]    [c.98]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.38 ]

Теоретическая неорганическая химия (1969) -- [ c.41 ]

Теоретическая неорганическая химия (1971) -- [ c.40 ]

Теоретическая неорганическая химия (1969) -- [ c.41 ]

Теоретическая неорганическая химия (1971) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Дуализм



© 2024 chem21.info Реклама на сайте