Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волновые характеристики излучения

    ВОЛНОВЫЕ ХАРАКТЕРИСТИКИ ИЗЛУЧЕНИЯ [c.5]

    Другой волновой характеристикой излучения является длина волны X. Она определяет расстояние, на которое распространяется электромагнитное колебание (т. е. фронт монохроматической волны) в течение одного периода. Частота V и длина волны X связаны друг с другом следующим образом  [c.5]

    Таким образом, фотоэффект совершенно определенно указывает на корпускулярную природу излучения, а интерференция и дифракция столь же определенно свидетельствуют о волновой природе света. Отсюда следует вывод, что движение фотонов характеризуется особыми законами, в которых сочетаются как корпускулярные, так и волновые характеристики. [c.17]


    Очевидно, что спектр излучения атомарного водорода является дискретным, т. е. излучение характеризуется набором частот (волновых чисел, длин волн), определяемых соотношением (10.7) при различных комбинациях целых чисел Пг и у. Среди этих частот имеются и частоты, соответствующие различным участкам спектра видимого света. Например, при переходе электрона на энергетический уровень с Лг = 2 с уровней, где = 3,4 и 5, характеристики излучения сле-дующ,ие  [c.151]

    В спектроскопии для характеристики излучения часто используют волновое число V. [c.514]

    Длина волны излучения К является основной величиной, с которой приходится иметь дело спектроскописту. Более логично было бы для характеристики излучения пользоваться частотами V = с1%, волновыми числами V = v/ o или круговыми частотами со = 2яv (с — скорость света в данной среде, Со — скорость света в вакууме). Эти величины определяются только свойствами источника, в то время как длина волны зависит от показателя прелом.ления среды. Частотами и волновыми числами обычно пользуются ири исследовании радио- и инфракрасного диапазонов. Изучение этих областей развивалось значительно позднее спектроскопии видимого и ультра-( иолетового излучения, для которых еще привычнее измерять длины волн, г не частоты. Все табличные данные в литературе приведены в длинах волн, а не в волновых числах. Это, в сущности, и определяет традицию употребления величины к как основной количественной характеристики спектральных линий. [c.12]

    Инфракрасное излучение принято характеризовать волновым числом v, которое выражается в обратных сантиметра (см ) и называется обычно частотой, хотя на самом деле единица частоты v имеет размерность обратной секунды (сек ). Для характеристики излучения используется также длина волны X, измеряемая в микронах. Волновое число v связано с длиной волы Я, следующей простой зависимостью  [c.333]

    До начала XX столетия световой поток рассматривали как совокупность волн различной длины, представляющих собой колебания электромагнитного поля. Волновой природой излучения объясняли такие явления, как интерференция, дифракция, поляризация света и др. Характеристика различных видов электромагнитного излучения показана на рис. 1. Излучение характеризуют длиной волны к или ее частотой V, связанных между собой соотношением = С (где С — скорость света). Шкалы на рисунке построены в логарифмическом масштабе так, что каждое деление любой шкалы отвечает изменению данной величины в 10 раз. Три верхние шкалы после названия соответствующих спектров показывают длины волн, выраженные в различных [c.13]


    Как видно из формулы (7), между волновой и квантовой характеристиками излучения существует прямая связь величина кванта энергии Е прямо пропорциональна частоте колебания V. [c.7]

    Основные характеристики электромагнитного излучения. Свет имеет двойственную природу волновую и корпускулярную. Волновые характеристики — это частота колебаний, длина волны и волновое число. Квантовая характеристика — это энергия квантов. Частота колебаний (V) показывает число колебаний в одну секунду и измеряется герцах, мегагерцах. Длина волны (А,) показы- [c.91]

    Основной характеристикой электромагнитного излучения яв ляется длина волны % или частота V (чаще вместо частоты ие пользуется волновое число V). Электромагнитные излучения раз личных длин волн (частот) составляют электромагнитный спектр В спектрофотометрии используются ультрафиолетовый (УФ), ви димый и инфракрасный (ИК) участки электромагнитного спектра [c.458]

    О. Определение спектральных, полосных и интегральных характеристик. Введение спектральных и интегральных характеристик не представляет никаких проблем для непрерывного спектра излучения они подобны обсуждавшимся ранее характеристикам поверхностей. Например, облако частиц различного размера дает непрерывное излучение. Под словом непрерывное понимается тот факт, что величины Кд и а следовательно, и / меняются медленно и непрерывно с изменением длины волны или волнового числа. Например, спектральный массовый коэффициент поглощения сажи можно с достаточной точностью представить в виде [c.487]

    Световое излучение принято характеризовать или длиной волны X, или частотой V, равной числу волн, проходящих че >ез данную точку в единицу времени, или волновым числом V, равным числу длин волн, укладывающихся на единицу длины. Все три характеристики связаны между собой соотношениями [c.6]

    Энергия излучения характеризуется электромагнитным спектром, охватывающим область от километровых радиоволн до десятых долей ангстрема у Излучения и космических лучей. Для характеристики участка спектра часто используют также волновое число V, которое показывает, какое число длин волн приходится на 1 см пути излучения в вакууме, и определяется соотношением у= 1/Х. [c.177]

    По сравнению с простыми ионными решетками расшифровка структуры молекул представляет собой значительно более сложную задачу, в особенности для несимметричных молекул. Наряду с определением углов рассеяния необходимо измерять интенсивность рассеянного излучения. Так как из дифракционной картины нельзя получить фазовые характеристики волнового излучения, рассеянного в веществе, прямое определение структуры во всех подробностях становится невозможным. Поэтому рассчитывают интенсивность рассеянного излучения исходя из нескольких возможных модельных структур молекулы и сравнивают результаты расчета с экспериментальными данными. При таком методе проб и ошибок параметры модельной структуры меняют до тех пор, пока не получат полного совпадения между теорией и экспериментом. [c.74]

    Обе величины в равной мере могут быть использованы как характеристики электромагнитного излучения. Наряду с этим часто используют величину 1/ , обозначаемую через со и называемую волновым числом. Волновое число и частота пропорциональны друг другу. [c.146]

    Атомные спектры. Согласно модели Резерфорда, энергия атома должна уменьшаться непрерывно за счет излучения, образующего сплошной спектр. Однако экспериментально установлено, что все атомные спектры имеют дискретный (линейчатый) характер. Спектр служит одной из важнейших характеристик атома и отражает его внутреннее строение. На рис. 1.1 приведен линейчатый спектр водорода. В видимой области спектра атома водорода имеются только четыре линии, они обозначаются Н , Нр, Н , Н . В прилегающей к видимой ультрафиолетовой области имеется еще несколько линий, которые вместе с указанными четырьмя образуют серию линий. Волновые числа линий этой серии выражаются формулой [c.10]

    Энергетические характеристики электромагнитного излучения. Электромагнитное излучение может быть охарактеризовано следующими параметрами длиной волны Я,, частотой V, или волновым числом V, и соответствующей им энергией Е излучения (табл. 1). [c.5]

    Правило отбора по спину (А8 = 0), казалось бы, должно быть универсальным, так как не учитывает симметричность рассматриваемой молекулы. Однако запрещенные по спину переходы часто наблюдаются на практике. Это правило отбора также основано на предположении о независимости волновых функций, а точнее, независимости спиновой и пространственной составляющих электронной волновой функции. Воздействие на электрон магнитного поля, возникающего при смешении относительно него (электрона) положительно заряженных ядер, приводит к смешиванию спиновой и орбитальной компонент, т. е. к спин-орбитальному взаимодействию. Таким образом, представление о чисто спиновых состояниях необходимо модифицировать, вводя обмен спинового момента с орбитальным. Например, состояние, формально описываемое как синг-летное, может в действительности иметь некоторые признаки триплетного, тогда как формальный триплет обладает некоторыми характеристиками синглета. Тогда переходы между синглетами и триплетами можно рассматривать как переходы между чисто синглетными и триплетными компонентами смешанных состояний. Поскольку спин-орбитальное взаимодействие связано с движением ядер, его величина резко возрастает с увеличением заряда ядра ( 2" ). Таким образом, в случае тяжелых ядер запрещенные по спину переходы проявляются сильнее. Хорошим примером является резонансное излучение ртути. (Термин резонансное излучение относится к испусканию при переходе с первого возбужденного состояния в основное резонансное поглощение и повторное излучение также могут наблюдаться в этом случае.) Основное состояние ртути — это 5о, а первый возбужденный синглет — Рь Переходы [c.41]


    Для понимания процессов, происходящих в начальный период инициирования волн горения и детонации разработана теория устойчивости процессов возникновения и распространения физико-химических волн в аэрированных, в том числе содержащих высокоэнергетические материалы средах. С помощью разработанных компьютерных программ осуществлено моделирование волн тепловой и гидродинамической природы и проведено исследование влияния их параметров на инициирование и устойчивость распространения волновых процессов в экзотермических системах. Подробно рассмотрено инициирование химической реакции с помощью мощного потока лазерного излучения. Изучено влияние характеристик ЭМ и условий воздействия внешнего теплового импульса на возможность воспламенения, охвата горением значительного объема взрывоопасного вещества и развития процесса до взрыва. Осуществлено моделирование процесса воспламенения и горения ЭМ под действием потока теплового излучения, генерируемого с помощью современных лазерных установок. Рассмотрены аномалии воспламенения и гашения горящего ЭМ при действии импульса лазерного излучения. Разработан механизм воспламенения и горения ЭМ, содержащих высокополимерные энергоемкие компоненты. Ис- [c.84]

    Инфракрасная радиация - волны, частота которых ниже минимальной частоты видимого света на красной границе спектра, но выше примерно 3 10 Гц. Характеристики ИК-излучения обычно описываются с помощью волнового числа. [c.293]

    Одним из способов, с помощью которого молекуле сообщается энергия, необходимая для перехода из одного энергетического состояния в другое, является действие на вещество энергомагнитного излучения. Электромагнитное излучение с точки зрения переноса энергии ведет себя так, как если бы оно представляло собой поток дискретных частиц энергии, называемых фотонами. Энергия каждого фотона Е связана с волновыми характеристиками излучения посредством постоянной Планка/1=6,624 -се/с  [c.91]

    Волны де Бройля. В то время как фотоэффект и эффект Комптона совершенно определенно указывают на корпускулярную природу видимого и рентгеновского излучения, интерференция и дифракция стмь же определенно свидетельствуют о волновой природ . Отсюда следует вывод, что движение фотонов. характеризуется особыми законами, в которых сочетаются как корпускулярные, так и волновые характеристики. Единство таких, казалось бы, несовместимых черт выражается соотношением (1.28), связывающим массу фотона с длиной волны излучения. [c.24]

    Состояние атомов характеризуют с помо1щ>ю волновых функций зависящих от координаты г, и определяют набором квантовых чисел (главного п, азимутального I, магнитного квантового mj и спинового т ). Набор четырех квантовых чисел определяет состояние атома и спектральные характеристики его излучения и поглощения. Принцип Паули позволяет объяснить строение электронных оболочек и слоев атома и дать основу Периодической системы. [c.41]

    Сформулируем основные требования к искомому уравнению. Прежде всего это волновое уравнение, и поэтому можно думать, что оно обладает по крайней мере некоторыми свойствами обычных волновых уравнений, описывающих, например, колебания струны скрипки, в данной книге рассматриваются в основном характеристики систем, не зависящие от времени. Будем исследовать допустимые уровни энергии атома или молекулы, игнорируя то обстоятельство, что вследствие испускания излучения или других процессов, меняющих энергию, уровень может существовать лишь короткое время. Таким образом, искомое уравнение не будет содержать времени. В частности, в него не будут входить производные по времени (в противоположность широкоизвестному математическому описанию волнового движения таких систем, как струна скрипки). Однако следует ожидать, что те величины, которые входили бы в классическое рассмотрение — кинетическая энергия частиц, отталкивание частиц с одноименными зарядами и притяжение с разноименными — должны [c.19]

    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИК спектроскопия), раздел мол, оптич. спектроскопии, изучающий спектры поглощения и отражения электромагн. излучения в ИК области, т.е. в диапазоне длин волн от 10 до 10 м. В координатах интенсивность поглощенного излучения-длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебат. уровнями осн, электронного состояния изучаемой системы (см. Колебательные спектры). Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геом, строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. [c.250]

    Для измерения спектров используют спектральные приборы-спектрофотометры, осн. части к-рого источник излучения, диспергирующий элемент, кювета с исследуемым в-вом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками Излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призменный монохроматор или монохроматор с дифракц. решетками. Спектр получают в графич. форме, а в приборах со встроенной мини-ЭВМ-в графической и цифровой формах. Графически спектр регистрируют в координатах длина волны (нм) и(или) волновое число (см )-пропускание (%) и(или) оптич. плотность. Осн. характеристики спектрофотометров точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини-ЭВМ (или микро-процеесоры) осуществляют автоматизир. управление прибором и разл. мат. обработку получаемых эксперим. данных статистич. обработку результатов измерений логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по разл. программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т. п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких т-рах, для измерения характеристик источников и приемников излучения и т.п. [c.397]

    Для исследования спектров в ИК области используют обычно спектрофотометры, работающие в интервале от 1,0 до 50 мкм (от 10000 до 200 см ). Осн. источниками излучения в них являются стержень из карйида кремния (глобар), штифт из смеси оксидов циркония, тория и иттрия (штифт Нернста) и спираль из нихрома. Приемниками излучения служат термопары (термоэлементы), болометры, разл. модели оптико-акустич. приборов и пироэлектрич. детекторы, напр, на основе дейтерированного триглицинсульфата (ТГС). В спектрофотометрах, сконструированных по классич. схеме, в качестве диспергирующих элементов применяют призменный монохроматор или монохроматор с дифракц. решетками. С кон. 60-х гг. 20 в. вьшускаются ИК фурье-спектрофотометры (см. Фурье-спектроскопия), к-рые обладают уникальными характеристиками разрешающая способность-до 0,001 см точность определения волнового числа v-до 10 " см" (относит, точность Ду/уя  [c.397]

    Рентгеновская флуоресценция (РФ) — это инструментальный аналитический метод для элементного анализа твердых и жидких проб с минимальной пробоподготовкой. Пробу облучают рентгеновским излучением. Атомы в пробе возбуждаются и испускают характеристическое рентгеновское излучение. Энергия (или длина волны) этого характеристического излучения различна для каждого элемента. Это дает основу для качественного анализа. Число фотонов характеристического рентгеновского излучения элемента пропорционально его концентрации, что обеспечивает возможность количественного анализа. В принципе, могут быть определены все элементы от бора до урана. Определение следов элементов (млп ), а также концентраций примесных и основных элементов (%) может быть выполнено из одной пробы. В зависимости от того, как измеряют характеристики рентгеновского излучения, различают рентгенофлуоресцентную спектрометрию с волновой дисперсией (РФСВД) и с энергетической дисперсией (РФСЭД). [c.57]

    В отличие от термического излучения черного тела спектры атомов не являются непрерывными, а состоят из большего или меньшего числа линий. Каждый элемент характеризуется вполне определенным атомным спектром, положение линий в котором можно измерить с высокой степенью точности. Для описания взаимного расположения линий в спектрах предлагались весьма сложные эмпирические формулы, которые в конце концов оказывались неудовлетворительными. Использование для характеристики спектральных линий волновых чисел 1/А- вместо длин волн 1 внесло в эмпирические законы значительное арифметическое упрощение. В 1908 г. Ритц сделал удивительное открытие, названное комбинационным принципом. Согласно этому принципу, все линии данного спектра можно связать с некоторым числом подходящих волновых чисел, или термов , так, что волновое число калодой линии в спектре удается представить как разность двух термов. Очевидное преимущество этого принципа состоит в том, что для полного описания спектра используется меньше термов, чем имеется линий в спектре. Этим значительно облегчается эмпирическое сопоставление данных. [c.104]


Смотреть страницы где упоминается термин Волновые характеристики излучения: [c.147]    [c.168]    [c.92]    [c.342]    [c.28]    [c.290]    [c.464]    [c.6]    [c.36]    [c.117]    [c.420]    [c.634]   
Смотреть главы в:

Электронные спектры поглощения органических соединений и их измерение -> Волновые характеристики излучения




ПОИСК





Смотрите так же термины и статьи:

Характеристика излучения



© 2025 chem21.info Реклама на сайте