Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром определение железных рудах

    Сумму щелочных металлов определяют после разложения навески хромита смесью серной и хлорной кислот с последующей отгонкой хрома в виде хлористого хромила и удаления двуокиси кремния в виде 51 р4. Все остальные операции ведут так же, как и при определении щелочей в железных рудах (стр. 183). [c.293]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Определение фосфора в хромовых рудах в зависимости от его количества можно выполнять весовым или фотоколориметрическим методом после разложения навески смесью серной и хлорной кислот с отгонкой хрома в виде хлористого хромила и удаления нерастворимого остатка фильтрованием". В фильтрате после добавления соли трехвалентного железа аммиаком осаждают гидроокиси, вместе с которыми осаждается весь фосфор. Осадок гидроокисей растворяют в соляной кислоте и в этом растворе определяют фосфор, так же как в случае железных руд (см. стр. 132). [c.289]

    Ортофосфорная кислота ограниченно применяется дата разложения материалов, поскольку фосфат-ионы мешают последующим определениям. Фосфорная кислота выпускается промышленностью с содержанием 85 (Ткш, = 158 °С), 89 и 98 % основного вещества (приблизительно). При нагревании фосфорной кислоты образуются полифосфорные кислоты. Горячая Н3РО4 используется для разложения сплавов на основе железа в тех случаях, когда применение НС1 может привести к образованию легколетучих соединений. Ортофосфорная кислота растворяет также различные алюминиевые шлаки, железные руды, хром, щелочные металлы. При давлении 2,9 10 Па температура кипения Н3РО4 возрастает до 240 °С. [c.863]

    Одной и.з фирм , занятых переработкой свинцовых концентратов, ранее применявшиеся классические методы определения серебра полностью заменены атомно-абсорбционным методом. Одна из фирм применяет ато.мно-абсорбционный анализ для определения магния в железных рудах, жаропрочных окислах, золах пищевых продуктов, цементах и чугуне, а также цинка в сталях. Ряд предприятий использует атомно-абсорбционные методы анализа для определения кальция,. магния, натрия и калия в золах сахаров и растений меди, кадмия, серебра, хрома, никеля — в растворах для гальванических покрытий меди и свинца — в винах. [c.8]

    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]


    Фотоколориметрическое определение ванадия в железных рудах производится по зеленовато-желтой окраске фосфор-но-вольфрамо-ванадиевой кислоты. Мешающее влияние хрома (до 20-кратных количеств), марганца и органических примесей может быть устранено, если следовать варианту метода, рекомендуемому Д. Н. Финкельштейном . [c.84]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    При пасгюртном анализе железных руд и агломератов определяют содержание товарной влаги, общее содержание железа, закиси железа, двуокиси кремния или нерастворимого остатка, окиси кальция, фосфора, серы. В отдельных случаях определяют содержание окиси магния, окиси алюминия, меди и др. При полных анализах кроме указанных компонентов, определяют металлическое железо, марганец, титан, ванадий, хром, щелочные металлы, свободную кремневую кислоту реже в железных рудах определяют мышьяк, сульфидную серу и углерод. Для специальных анализов иногда требуется определение бора, цинка, свинца, германия и др. [c.79]

    Метод с использованием комплексона III применяют для определения хрома в бронзе [90], стали и алюминиевых сплавах [88], железных рудах [91, 92], хромовых рудах и керамических изделиях [93, 94]. [c.455]

    Щелочно-окислительный плавень. Применяют при определении серы, мышьяка, хрома, ванадия, фосфора в рудах, для отделения титана от ванадия, хрома и др. Сплавление проводят с 8-10-кратным количеством плавня в платиновых, железных и никелевых тиглях. [c.49]

    Методика определения мышьяка в рудах сводится к следующему 5—6 г руды сплавляют в железном тигле с перекисью натрия. После выщелачивания водой и подкисления соляной кислотой мышьяк осаждают раствором соли двухвалентного хрома. Стали и чугуны (5—6 г) переводят в раствор при помощи азотной кислоты. Азотнокислый раствор переводят в сернокислый, по охлаждении разбавляют водой до 100 мл и кипятят до получения прозрачного раствора, затем прибавляют 30% по объему концентрированной соляной кислоты и осаждают мышьяк. [c.64]

    Определение из отдельной навески. Навеску 0,5—2 г тонкоизмельченной руды сплавляют с перекисью натрия или едкой щелочью в никелевом или железном тигле в течение 10— 20 мин. или навеску руды тщательно растирают пестиком в агатовой ступке с 10-кратным количеством соды и сплавляют в платиновом тигле. Сплав выщелачивают водой, при этом железо и титан остаются в остатке, а ванадий и хром переходят в раствор в виде ванадата и хромата натрия. [c.80]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Для определения ванадия в железных рудах, железе и шлаках Гольцберг и др. [61] разработали ускоренный фотоколориметрический метод. В статье указаны минимальные количества ванадия, которые можно определять с различными реагентами перекисью водорода, тиогли-колевой кислотой, дифенилкарбазоном, кислотным хром-синим, в виде желтого и синего фосфорно-вольфрамо-ва-надиевого комплексного соединения и по окраске серно- [c.25]


    Разработаны различные экстракционно-фотометрические варианты определения фосфора в виде синего ФМК комплекса, возникающего после обработки экстракта восстановителем. Так, экстракция ФМК эфиром, обработка экстракта раствором двухлористого олова и фотометрирование ФМК сини применены для определения фосфора в присутствии больших количеств ванадпя [130]. Аналогичные методики, отличающиеся только восстановителем или природой экстрагента, описаны для определения фосфора в сталях, чугуне и железных рудах [131] металлическом хроме [132] природных водах [133] для одновременного определения фосфора и кремния [134] разделения и фотометрического оиределения фосфата, арсената и силиката [135, 136]. [c.240]

    Сонгина и Ходасевич [4] исследовали вопрос о роли смеси Циммермана — Рейнгардта при потенциометрическом определении железа. Попов [5] с целью замены ртути предложил восстанавливать основную массу ионов Ре + хлористым оловом, а оставшуюся часть — хлористым хромом, избыток которого окисляется кислородом воздуха. Метод не нашел широкого применения. Файн-берг и Заглодина [6] описали вариант бихроматного метода, по которому ионы Ре + восстанавливают хлористым оловом, избыток которого окисляют раствором двухромовокислого калия в присутствии силикомолиб-деновой кислоты до перехода синей окраски раствора в зеленую. После этого титруют ионы Ре + двухромовокислым калием в присутствии индикатора фенилантра-ниловой кислоты до перехода зеленой окраски в малиновую. Метод не применяется из-за неясной точки перехода при титровании избытка хлористого олова. Нами был использован бихроматный метод с применением в качестве восстановителя хлористого олова или металлического алюминия. При применении хлористого олова избыток его окисляли хлорной ртутью. В качестве индикатора в обоих случаях применяли дифениламино-сульфонат натрия. В книге Сырокомского [7] подробно описаны бихроматный и перманганатометрический методы определения содержания Реобщ в железных рудах и титаномагнетитах. [c.12]

    Для анализа железных руд используют восстановление четырехвалентным ванадием Ре (III) в аммиачной среде с образованием последним окрашенного соедипепия с а,а -дипиридилом (также и с о-фенантролином). Первоначально железо отделяют сплавлением с содой, после чего ванадий восстанавливают нитритом натрия [3[. Определение ванадия в рассматриваемых объектах может быть произведено по реакции окисления им бензидина. Мешают окислители и элементы, даюпще окраи1енные ионы влияние первых устраняют восстановлением, а вторых - - отделением ванадия куи-фероном [15]. Для колориметрического определения ванадия в минералах (а также и в стали) рекомендуют реакцию со стрихнином [16]. Предложен метод анализа руд и сталей, основаннрлй па измерении оптической плотности раствора при 270 ммк. обусловленной ионами Ю4 в 1 N КаОН. Достоинство метода состоит в его быстроте, так как исключаются длительные операции выпаривания, фильтрования и т. и. Мешающее действие хрома устраняют 07делением ванадия на анионитовой смоле [70]. [c.473]

    Натрия пероксид. ЫагОг, Т ,т = 460 °С. Щелочно-окис-лительный плавень. Применяют при определении серы, хрома, ванадия, марганца, кремния, фосфора в рудах и ферросплавах, молибдена в молибденовом блеске и др. Сплавление проводят с 6-8-кратным количеством плавня в железных, никелевых и серебряных тиглях. [c.48]

    Смесь 6 ч. натрия карбоната (безводного) с 0,5 ч. калия нитрата. Щелочноокислительный плавень. Применяют при определении общей серы, мышьяка, хрома, ванадия, фосфора в рудах, для отделения титана от ванадия, хрома и др. Сплавляют с 8—10-кратным количеством плавня. Сплавление можно проводить в платиновых, железных и никелевых тиглях. [c.23]

    Перекись натрия. Этот щелочноокислительный плавень применяют при определении серы, титана, ванадия, хрома, при анализах хромовых руд и в ряде других случаев. При сплавлении с ним пользуются никелевыми или железными тиглями. [c.23]


Смотреть страницы где упоминается термин Хром определение железных рудах: [c.359]    [c.234]    [c.16]    [c.392]    [c.20]    [c.20]    [c.22]    [c.389]    [c.529]    [c.76]    [c.383]   
Химико-технические методы исследования (0) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Железные руды

Железные руды, определение хрома

Железные хрома

Хром в рудах



© 2025 chem21.info Реклама на сайте