Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пределы кипения растворителе

    Флотация. Нами было обнаружено, что кристаллики парафина смачиваются углеводородными растворителями не полностью., К этим растворителям относится также и масло фракций, в состав которых входит данный парафин. Вследствие неполноты смачивания кристаллики парафина стремятся выделиться на поверхность раздела масла и воздуха и плавают, несмотря на то, что плотность парафина в твердом состоянии выше, чем масла тех же пределов кипения, и тем более, чем растворов этого масла в легких углеводородных растворителях. [c.136]


    Лаки и краски [15—20]. Признанным растворителем красок всегда считали скипидар, до тех пор пока не было найдено, что бензины-растворители в равной степени пригодны для этой цели. Разница в условиях применения большая бензины-растворители вызывают при добавлении к краскам несколько большее понижение вязкости, нежели скипидар, и в зависимости от пределов кипения могут несколько отличаться по скорости испарения. [c.561]

    Фракционный состав бензинов, испаряющихся со скоростью, при которой отлагается хорошая пленка, установлен довольно точно [21—24]. В зависимости от конкретных условий применения в качестве растворителей используются как легкие фракции (пределы кипения 40—150° С), так и весьма тяжелые бензино-лигроиновые смеси (пределы кипения 150—230° С). Последние используются главным образом для получения покрытий с форсированной принудительной сушкой. [c.561]

    Гораздо более развито извлечение канифоли из смолы смолоносных пород деревьев, пней и т. д. при помощи экстракционного бензина. На некоторых лесохимических заводах древесину обрабатывают паром, чтобы отогнать летучие смолистые продукты, которые затем направляются на обработку экстракционным бензином. Последний представляет собой хорошо очищенную малосернистую парафинистую фракцию с пределами кипения примерно 90—150° С. Потери растворителя за цикл не превышают 1%. [c.564]

    Показательно в этом плане сопоставление кривых распределения для смесей на основе фракций дистиллята вторичного происхождения, различающихся пределами кипения, фракционным и компонентным составом. Видно, что более узкая дистиллятная фракция с концом кипения 360°С (рис. 1.3) является худшим растворителем для остатков первичного и вторичного происхождения данная смесь отличается меньшей дисперсностью в сравнении с дистиллятом более широкой фракции (см. рис. 1.2). [c.9]

    Уайт-спирит, имеющий пределы кипения 148-200 °С (по ГОСТ), занимает по интервалу кипения 30 °С) промежуточное положение, и (см. рис. 6.9,в) дпя него отмечалось более заметное, чем для Б-59, различие (особенно по начальным фракциям) в составе по ИТК, определенном на различных колоннах. Однако даже на колонне Л-23 концентраты отдельных углеводородов выделялись не с той четкостью (кривая 5), как это было для более узкой фракции - растворителя. На рис. 6.9,г показаны кривые фракционного состава двух вакуумных дистиллятов. Можно отметить меньшее различие между кривой разгонки в колбе Богданова (1) и остальными кривыми, снятыми на ко- [c.162]


    При изучении растворимости товарных парафинов разных температур плавления в нефтяных растворителях с различными пределами кипения было найдено [47], что изменение логарифма растворимости парафина в зависимости от температуры выражается прямыми линиями. На основании полученных данных для определения растворимости парафина была составлена номограмма [48], изображенная на рис. 14. При определении растворимости парафина на левой шкале номограммы откладывается средняя температура кипения растворителя, а на правой шкале — разность температуры плавления парафина и температуры равновесия, при которой определяется растворимость. [c.72]

    Согласно общеизвестному правилу, избирательная способность растворителя при повышении его растворяющей способности ухудшается [72, 73]. При понижении температуры она улучшается, поскольку общая растворяющая способность растворителя уменьшается и растворимость парафина снижается быстрее, чем масел. Избирательная способность растворителя зависит также от фракционного и химического состава перерабатываемого сырья. В случае легкого масляного сырья со сравнительно низкими пределами кипения она оказывается более низкой, чем в случае тяжелого высококипящего сырья, [c.80]

    Вытеснение адсорбированных компонентов веществом, обладающим меньшей адсорбируемостью (неполярные растворители). В этом случае процесс десорбции осуществляется за счет нарушения состояния равновесия между адсорбатом и протекающим через слой адсорбента раствором и обусловливается меньшей концентрацией данных компонентов в растворе, чем соответствующая условию равновесия с адсорбатом. Например, при адсорбционном разделении различных нефтепродуктов десорбирующим агентом может быть бензиновая фракция, отличающаяся по температурным пределам кипения от исходной смеси, что позволяет в дальнейшем отделить эту бензиновую фракцию от десорбированных компонентов простой перегонкой или ректификацией. [c.280]

    Таким образом, при разделении углеводородных фракций с достаточно широкими пределами кипения даже многоступенчатая экстракция высокоселективными растворителями не обеспечивает эффективного выделения относительно высококипящих аренов. [c.59]

    Качество деасфальтизата в значительной степени определяется также фракционным и химическим составами растворителя. Уменьшение содержания легких фракций (повышение температур начала кипения и выкипания 10 и 50%) даже при сохранении температуры конца кипения растворителя приводит к заметному ухудшению качества деасфальтизата — увеличению содержания в нем асфальтенов и металлов Колебания температуры конца кипения растворителя в довольно значительных пределах ( 10%) при сохранении содержания легких фракций заметно не влияют на качество получаемого деасфальтизата. [c.146]

    Было показано /13/, что логарифмы растворимости товарных парафинов с разными температурами плавления в нефтяных растворителях с различными пределами кипения меняются в линейной зависимости от температуры. Это указывает на возможность применения уравнения Шредера при расчете растворимости парафинов в нефтях. [c.21]

    В качестве фенольных антиокислителей в 30—50-х гг. в основном использовали фракцию древесной смолы лиственных пород (березы, бука и др.) с пределами кипения 240—310°С. Древесно-смоляной антиокислитель (ДСА) применяется до сих пор. Его активной частью являются многоатомные фенолы и их метиловые и диметиловые эфиры. ДСА в соответствии с ГОСТ 3181 должен содержать не менее 60% фенолов, остальное — нейтральная часть, служащая природным растворителем активных соединений. К компонентам бензина, содержащим непредельные углеводороды, ДСА добавляется в концентрации 0,05-0,15%. [c.358]

    В правой части рисунка показаны растворители с высокими точками кипения, представляющие собой менее летучие фракции, которые, однако, требуют более длительной сушки очищенных предметов. Исходя из этого, за керосином, например, нельзя признать значения растворителя, годного для химической чистки. Точки кипения растворителя стоддард находятся в пределах от 300 до 410° по Фаренгейту . Следовательно, с одной стороны, пользование этим растворителем не сопряжено со сколько-нибудь [c.118]

    В данном случае для десорбции используются два растворителя, температура кипения которых отличается от температурных пределов кипения исходного сырья. Один из растворителей неполярный (бутан — нентан) — десорбент А — предназначается в основном для вытеснения из адсорбера метано-нафтеновых углеводородов этот растворитель обладает низкой адсорбируемостью. [c.197]

    Однако можно предполагать, что при разделении различных смесей, для которых основная причина избирательного растворения является общей (например, различие в поляризуемости молекул), сравнительная избирательность растворителей с изменением состава исходного сырья будет меняться незначительно. Это можно ожидать при сравнении избирательности растворителей в случае экстракции узких фракций нефти. При расширении пределов кипения фракций картина может несколько изменяться, т. к. в этом случае будет сказываться избирательность по размерам молекул. При узком фракционном составе сырья влияние характера разделяемого сырья на избирательность растворителя во всех случаях можно принять одинаковым и считать, что избирательность растворителя определяется только строением его молекулы. Такое допущение позволяет связать избирательность растворителя с физико-химическими свойствами, зависящими от строения его молекул. [c.253]


    Поскольку применяемые растворители являются простыми эфирами, а смешанные магнийорганические соединения при повышенной температуре реагируют с эфирами, целесообразно осуществлять контроль за температурой реакции. После того как реакция началась, галогенид в соответствующем растворителе следует вводить с такой скоростью, чтобы температура реакционной смеси находилась в пределах 40—50° и не достигала температуры кипения растворителя. При этих условиях можно избежать таких нежелательных реакций, как диспропорциониро-вание и конденсация продуктов реакции. Далее, магнийорганические соединения даже сложного характера не реагируют в заметной степени с ТГФ при обычной температуре [77]. Только при повышенной температуре (.190—200°) ТГФ, представляющий собой 1,4-эпоксисоединение, реагирует с магнийорганическими соединениями с образованием первичных спиртов, содержащих четыре дополнительных атома углерода [63]. [c.8]

    Из массообменных процессов фракционирования многокомпонентных смесей в производствах смазочных масел наибольшее распространение получили экстракционные процессы, основанные на использовании различной растворимости углеводородов в растворителях. В этих процессах фракционирование масляного сырья осуществляется не по температурным пределам кипения, а по химическому углеводородному составу. Одни групповые химические компоненты сырья хорошо растворяются в выбранном для данного экстракционного процесса растворителе, а другие, наоборот, плохо или совсем не растворяются. [c.253]

    Большую роль при выборе растворителя играет его температура кипения. Температура кипения растворителя определяет верхний предел температурного режима реакции, легкость отделения растворителя от других компонентов реакционной смеси, целесообразность применения этого растворителя для перекристаллизации вещества с достаточно высокой температурой плавления, возможность отгонки или испарения растворителя без разложения растворенного вещества и т. д. [c.12]

    В качестве растворителей для клеев широко применяют бензины с различными пределами кипения, ароматические углеводороды (ксилол, толуол и др.), хлорированные углеводороды, кетоны, а также смеси различных растворителей. [c.144]

    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]

    Имеется общее правило, согласно которому избирательная способность растворителя при повышении его растворяющей способности ухудшается. При понижении температуры избирательная способность растворителя улучшается, поскольку при понижении температуры его общая растворяющая способность уменьшается и растворимость парафина снижается при этом быстрее, чем масел. Избирательная способность растворителя зависит также и от природы обрабатываемого сырья. В отношении легкого масляного сырья с относительно низкими пределами кипения она оказывается более низкой, чем в отношении тяжелого высококипящего сырья. На избирательной способности растворителя сказывается также и хиьшческий состав сырья. [c.89]

    Среди обычных углеводородных классов существует следующий ряд растворимости полициклическая ароматика > моноциклическая ароматика циклопарафины 1> парафины. Интервалы растворимости необязательно должны быть одинаковыми. Так, например, для парафино-ароматической системы коэффициент разделения намного больше, чем для парафино-циклопарафиновой [66]. Для фторуглеродных растворителей нормальный ряд растворимости является обратным. В этом случае для соединений с приблизительно равным молекулярным весом ряд растворимости следующий парафины > циклопарафины > ароматические [79]. Углекислота также ведет себя необычно она смешивается с парафинами и моноциклопарафинами, но не полностью смешивается с дицикл опар афинами, которые имеют те же самые пределы кипения [80]. [c.281]

    В различных смесях и для различных целей применяются бензин, лигроин, керосин и легкий газойль, т. е. фракции, пределы кипения которых простираются от 40 до 330° С. Обычно для разбавления в небольших количествах применяется лигроип, выкипающий в пределах 120—230° С. Поскольку к растворителю не предъявляется никаких требований в отношении цвета, запаха и содержания серы или смол, — в данном случае вполне приемлемым может быть и неочищенный крекинговый дистиллят. В нескольких весьма редких случаях нужно иметь в виду, что смешиваемые компоненты могут оказаться несовместимыми . Осаждение асфальтенов из сверхпарафинистой среды не является чем-то неизвестным и, по-видимому, служит, причиной так называемого спекания . [c.563]

    Экстракционные бензины [61—65]. Бензины в достаточно широких масщтабах используются для процессов экстракции. Сюда относится экстрагирование остаточного масла из жмыхов касторовых и соевых бобов, семени хлопчатника, зерен пшеницы. Растворителем, используемым в качестве экстрагента, в вышеописанных случаях служит гексано-гептановая фракция с пределами кипения 65—120° С. Там где извлекаемые из жмыхов масла являются съедобными или предназначены для целей очистки, необходимо иметь стабильный экстрагент, полностью лишенный остаточного запаха или привкуса. Для получения такого экстрагента вполне пригодны прямогонные продукты из нейтральных (не содержащих нафтеновых кислот) парафинистых нефтей. [c.564]

    Растворимости инсектицидов, содержащих хлор, часто способствует некоторая доза вспомогательного растворителя, богатого метилнафталпнами. Углеводородный растворитель, используемый в бытовых инсектицидах, представляет собой лигроин с высокой температурой вспышки (65° С) и пределами кипения 190— 250° С. Этот лигроин должен быть подвергнут глубокой очистке концентрированной серной кислотой. Нефтепродукты, предназначенные для распыливания в быту и в животноводстве, выпускаются также для распыливания из аэрозольных контейнеров, [c.568]

    Нефтяные масла широко используются для уничтожения сор няков. Активность углеводородов, по-видимому, располагается в следуюп ем порядке ароматические > олефины > предельные углеводороды. Лигроин для химчистки (представляюш ий собой высокоочищенный растворитель с пределами кипения 160—200° С) используется в качестве особой жидкости для очищения от сорня ков парниковых рам, например для выращивания моркови [160]  [c.569]

    Гранулометрический состав частиц комплекса и карбамида. Гранулометрический состав комплекса-сырца зависит от условий депарафинизации. Размеры частиц комплекса изменяются в широких пределах. Они сжазывают влияние на качество получаемого иарафина. В процессе Эделеану, где используют водный раствор карбамида,, образуются три различных модификации частиц комплекса зернистые, в виде пульпы и в виде порошка. На образование зернистого комплекса влияют концентрации раствора мочевины, пределы кипения сырья, содержание н-алканов в сырье, качество растворителя, сырья и карбамида, количество раствора карбамида, температура образования комплекса, интенсивность перемеаивания. [c.56]

    Вытеснением адсорбированных компонентов веществом, обладающим меньшей адсорбируемостью (неполярные растворители), когда процесс десорбции осуществляется за счет нарушения состояния равновесия между адсорбированной фазой и протекающим через слой адсорбента раствором вследствие меньшей концентрации данных компонентов в растворе, чем это следует но условию равновесия с адсорбированной фазой. Например, нри адсорбционном разделении различных нефтепродуктов десорбирующим агентом может быть бензиновая фракция, отличающаяся но томнературным пределам кипения от пределов кипения исходной смеси, что позволяет в последующем отделить эту бензиновую фракцию обычной перегоикой. [c.253]

    По результатам исследований Н. Ф. Грищенко с авторами [41, с. 319—328], при разделении смеси н-гептан — толуол наиболее селективными растворителями оказались сульфолан, этилпирроли-дон и пропиленкарбонат, а при разделении н-нонапа и о-ксилола — сульфолан и пропиленкарбонат [42]. Высокой емкостью и селективностью обладают также диметилформамид, фурфурол и нитрометан [43], однако практическое применение их для выделения ароматических углеводородов g — g затруднено, так как температуры кипения этих растворителей находятся в пределах кипения бензиновых фракций. [c.51]

    Эффективность депарафинизации карбамидом снижается при повышении пределов кипения сырья если у дизельного топлива и легких масел температуру застывания можно понизить до —70° С и более, то у вязких масел такую низкую температуру застывания получить нельзя. Причина этого заключается в преобладающей роли гибридных структур для фракций нефтей выше 300° С [90]. Во многих нефтях с повышением пределов кипения нефтяных фракций возрастает содержание циклических углеводородов с разветвленными цепями, которые, хотя и имеют повышенную температуру кристаллизации, в комплекс с карбамидом пе вовлекаются. В то же время с повышением температуры кипения фракций снижается содержание ароматических и нафтеновых углеводородов с длинными боковыми цепями [45, 53, 59]4Дапные табл. И, в которой приведены характеристики трех масляных фракций до и после депарафинизации (растворитель — МЭК, отношение сырья к растворителю 1 2, [c.45]

    Перемещаемый на ленте торф (I) орошается чистым растворителем (IV) при температуре 80°С перед сбросом в разгрузочный люк (7). Пройдя слой торфа (3) мисцелла попадает в лоток (5), из которого насосом подается на форсунку (4), проходит слой торфа (3), снова собирается в следующий лоток и насосом подается на следующую форсунку и так далее. В экстракторе по приводимой технологии существует восемь ступеней циркуляции мисцеллы, Экстракция протекает при температуре на 10-20°С ниже температуры кипения растворителя. Нагрузка по торфу составляет 2,2 т/ч. Высота слоя торфа поддерживается с помощью регулирующего пшбера (2) в пределах 0,8-1,4 м. Время пребывания торфа в аппарате 4-5 ч, скорость движения ленты транспортера 3 м1ч. Дебитуминизированный торф (П) после отделения экстракции подается в шнековый испаритель, где с помощью глухого пара проводится [c.21]

    Уайт-спирит, бензнн-растворитель для лакокрасочной промышленности (ГОСТ 3134—52), бесцветная легковоспламеняющаяся жидкость, представляющая смесь парафиновых углеводородов (около 82%), олефинов (около 15%) и ароматических углеводородов (не более 1,6%). Плотн. 770 кг1м пределы кипения 147— 200° С в воде нерастворим. Т. всп. (в закр. тигле) 33— 36° С. т. всп. (в откр. тигле) 43° С т. воспл. 47° С мнним. т. самовоспл. 227°С (метод МакНИИ) стандартная т. самовоспл. 260° С темп, пределы воспл. нижи. 33, верхн. 68° С. Тушение см. Нефтепродукты. Средства тушения. [c.258]

    Хлористый винил растворим в обычных органических растворителях. Киреев и Романчук [10] провели количественное изучение растворимости хлористого винила в пяти следующих растворителях 1) керосине (пределы кипения 140—250°) 2) 1,2-дихлорэтане (т. кип. 83,2—83,4°, плотность 1,2499) 3) 97-процентном этиловом спирте 4) тяжелом сольвенте, содержащем примерно равные количества олефиновых, ароматических и нафтеновых углеводородов (пределы кипения 150 —250°) и 5) в соляровом масле (иначе не охарактеризованном). Результаты этих исследований показаны в табл. 5 и представлены графически на рис. 2 и 3. [c.200]


Смотреть страницы где упоминается термин Пределы кипения растворителе: [c.93]    [c.427]    [c.653]    [c.40]    [c.85]    [c.227]    [c.394]    [c.93]    [c.23]    [c.274]    [c.112]    [c.47]    [c.249]    [c.144]   
Химико-технические методы исследования Том 3 (0) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Скорости улетучивания и пределы кипения различных растворителей



© 2025 chem21.info Реклама на сайте