Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислот смеси, использование

    Перенос генетического материала путем прямого контакта между двумя клетками называется конъюгацией. Уже давно на основании морфологических данных предполагали, что и у бактерий может происходить своего рода спаривание однако только эксперименты с множественными мутантами бесспорно доказали, что и у бактерий возможна передача генетического материала при прямом межклеточном контакте. В 1946 г. Ледерберг и Татум провели решающий опыт с двумя мутантами Е. соИ К12, каждый из которых был ауксотрофным по двум различным аминокислотам (рис. 15.14). Один двойной мутант нуждался в аминокислотах А и В, но был способен синтезировать С и D (А В D ) другой мутант был ему комплементарен (А В" С D ). Эти мутанты не росли на минимальной питательной среде и не образовывали колоний. Однако если на ту же минимальную среду высевали смесь суспензий обоих мутантов, то колонии появлялись. Клетки этих колоний обладали наследственной способностью синтезировать все аминокислоты, т.е. принадлежали к типу A B D (были прото-трофными). Такие клетки возникали с частотой 1 10 это были генетические рекомбинанты-они объединяли в себе генетическую информацию двух реципрокно дефектных (взаимодополняющих) родительских клеток. Использование в качестве исходных штаммов множественных мутантов исключало возможность появления ревертантов, так как вероятность одновременной реверсии по двум генам составляет величину порядка 10 на генерацию. Необходимой предпосылкой рекомбинации служил прямой контакт родительских клеток. [c.456]


    Адсорбционная хроматография используется главным образом для разделения веществ липофильного характера. Хроматографическое разделение гидрофильных соединений, прежде всего аминокислот, стало возможным после открытия Мартином и Синджем [15] в 1941 г. распределительной хроматографии. Эти авторы использовали в своей работе столбик силикагеля, насыщенного водой. На верхний конец столбика наносили смесь веществ, предназначенную для разделения, и промывали соответствующими органическими растворителями. Подвижной фазой, таким образом, служил органический растворитель, а неподвижной — вода, удерживаемая силикагелем. Разделение аминокислот в этих условиях было возможно лишь после их ацетилирования.. Кроме того, получить силикагель со стандартными свойствами было очень трудно. В связи с этим в качестве материала, способного удерживать на своей поверхности воду, авторы предложили использовать целлюлозу [16]. Целлюлоза оказалась пригодной для разделения свободных аминокислот. От использования целлюлозы как носителя неподвижной фазы оставался всего один шаг к замене порошкообразного носителя полосками бумаги. Так была открыта хроматография на бумаге. В 1944 г. английские авторы опубликовали сообщение [3] об использовании в качестве носителя водной фазы целлюлозы в виде фильтровальной бумаги, в качестве подвижной фазы был испробован ряд растворителей. В 1952 г. Мартин и Синдж были удостоены Нобелевской премии за открытие распределительной хроматографии типа жидкость — жидкость. В том же году Джеймс и Мартин [10], исходя из теоретических положений адсорбционной хроматографии [6], разработали теорию распределительной хроматографии типа жидкость — газ. [c.12]

    Синтез БОК-аминокислот с использованием окиси магния метод Швицера [116]. Смесь аминокислоты (20 ммолей), БОК-азида (4.3 г, 30 ммолей), окиси магния (1,6 г, 40 ммолей), диоксана (60 мл) и воды (30 мл) перемешивают в течение 20 час при 40—45°. Реакционную смесь охлаждают, окись магния отделяют фильтрованием и дважды промывают ее 100 мл воды. Объединенные фильтрат и промывные воды трижды экстрагируют эфиром для удаления непрореагировавшего азида. Водную фазу охлаждают льдом, подкисляют твердой лимонной кислотой и далее обрабатывают, как описано выше. [c.72]

    Для определения кинетических закономерностей в опытах с добавлением в торфонавозную смесь аскорбината железа и в контрольном эксперименте без использования БАД было проведено математическое моделирование. Результаты моделирования показали, что процесс образования свободных аминокислот с достаточной точностью описывается степенным уравнением, сходным с уравнением химической кинетики дробного порядка  [c.247]


    Полиаминокислоты и регулярные полипептиды — это синтетические полипептиды, которые получаются при поликонденсации аминокислот или коротких пептидных последовательностей. В противоположность систематически построенным пептидам они представляют собой не отдельные соединения, а смесь гомологов макромолекул. Использование различных номенклатур вызывает затруднения при названии этих веществ. Комиссия ШРАС—ШВ по биохимической номенклатуре предложила правила [512], которые и применяются при последующем изложении. Приравнивание таких синтетических полипептидов к полимеризованным аминокислотам или фрагментам находится в противоречии с обозначением, используемым в макромолекулярной химии. Для процесса многократного присоединения аминокислот или пептидных фрагментов вместо термина полимеризация следует применять термин поликонденсация . [c.208]

    Ионообменную хроматографию широко используют и для разделения неорганических соединений, а в органической химии — для разделения смесей кислот или оснований. Классическим примером является разделение смесей аминокислот, образующихся при гидролизе пептидов и белков [43]. Пептиды, белки и ферменты, содержащие кислотные и (или) основные группировки, также могут быть разделены с помощью ионообменной хроматографии. Интересные возможности открываются при использовании сильноосновных смол в бисульфитной форме [44]. Когда смесь альдегидов и кетонов пропускают через такую смолу, они обратимо связываются со смолой в виде бисульфитных комплексов это позволяет разделить компоненты смеси. [c.321]

    Разделение производных аминокислот с помощью ГХ, которое было описано в предыдущих разделах, наталкивается на ряд трудностей, объясняемых несколькими причинами. Как уже упоминалось, раствор природных аминокислот представляет собой сложную смесь соединений различной летучести и полярности. Для этой смеси характерен широкий интервал удерживаемых объемов и необходимы высокие температуры разделения. В некоторых случаях, например для метиловых эфиров ДНФ-аминокислот, ГХ-анализ удается провести только на коротких колонках с малым количеством жидкой фазы. С другой стороны, наиболее летучие простые аминокислоты представляют собой близкие по структуре (в некоторых случаях изомерные) соединения, и для их разделения необходимы колонки с высокой избирательностью. Положение может еще более осложниться из-за того, что некоторые О-замещен-ные оксиаминокислоты выходят в тех же интервалах удерживаемых объемов и их пики могут накладываться на пики вышеупомянутых аминокислот. Этим проблемам уделяется особое внимание в работе [19], где показано, что, несмотря на использование более 80 различных жидких фаз, так и не удалось количественно разделить н-амиловые эфиры следующих ТФА-аминокислот Ала, Вал, Гли, Иле, Лей, Сер, Тре. В данном случае неудачное разделение происходит главным образом из-за О-ТФА-производных Сер и Тре. Как многократно наблюдали, производные со свободной ОН-группой имеют большие удерживаемые объемы и не мешают разделению. [c.328]

    ЭТОМ оказалось, что оптимальная скорость элюирования основных аминокислот достигается лишь при использовании более концентрированных буферных растворов. Однако при значительном изменении концентрации и pH буфера наблюдалось увеличение объема набухшего ионита и возрастание гидродинамического сопротивления колонки. Одновременно повышался уровень базовой линии. Кроме того, в этих условиях после каждого опыта приходилось извлекать иониты из колонки, а затем, после их регенерации, вновь набивать колонку. В итоге оказалось удобнее проводить анализ образца на двух колонках. На первой осуществляли анализ кислых и нейтральных аминокислот, а сумму основных аминокислот вытесняли в конце анализа гидроокисью натрия. На второй, более короткой колонке вначале в виде суммарного пика элюировали смесь кислых и нейтральных аминокислот, а затем осуществляли разделение основных аминокислот. После получения более качественных ионитов и усовершенствования метода детектирования был разработан современный одноколоночный аминокислотный анализ. [c.306]

    Водонасыщенный раствор фенола. <]месь готовят растворе нием 100 мл дистиллированной воды в 400 мл фенола при легком нагревании. При охлаждении смесь расслаивается. Перед использованием раствор сильно встряхивают, берут необходимое для разделения количество растворителя и осторожно нагревают для превращения эмульсии в раствор. Для многих аминокислот Rj в феноле сильно изменяется в зависимости от pH среды . Для предотвращения этого явления используют фенол , растворенный в буферном растворе с соответствующим значением pH. [c.128]

    Анализ таблицы показывает, что в первом растворителе (За) плохо разделяются валин и метионин, не разделяются глицин и аспарагиновая кислота, а во втором (46) вместе движутся аргинин и аспарагиновая кислота и близко друг к другу — глицин и серии. Для разделения аминокислот, дающих одно пятно в бутанольно-водном растворителе, применяли смесь фенола с фосфатным буфером с рН=12. Кроме того, для увеличения разрешающей способности растворителя для веществ с близкими Rf на пятно аминокислот на стартовой линии несколько раз наносили порции растворителя. При этом аминокислоты перемещаются на периферию пятен и проявляются в виде колец. Удовлетворительное разделение аминокислот при использовании бутанольно-водных растворителей достигается через 36 ч. Увеличение времени протекания растворителя не улучшает разделения, но пятна аминокислот получаются диффузными, особенно у веществ с большой величиной Ег (валин, метионин, лейцин). [c.214]


    Некоторые аминокислоты при использовании для метилирования окиси серебра с иодистым метилом дают нежелательные результаты [88, 89]. Например а) в результате метилирования пептидов, содержащих аспарагиновую кислоту, получается сложная смесь соединений [88] Ь) остатки глутаминовой кислоты обычно не дают осло Жнений, но некоторые производные пептидов претерпевают частичное расщепление цепи с образованием остатка пироглутаминовой кислоты [88, 89] с) остаток триптофана гладко образует диметильное производное после метилирования но было отмечено, что триптофан в положении 9 грамицидинов А к В представляет исключение (табл. 1), так как появляются примеси на 30 м. ед. выше молекулярного веса. [c.216]

    Все эти лабораторные методы синтеза а-аминокислот (in vitro) приводят к образованию рацемической смеси D- и L-изомеров. Для получения чистых оптических изомеров разработан ряд приемов, но более универсальны и перспективны, пожалуй, методы с использованием биологических систем. Они основаны на том, что организмы животных потребляют, как правило, лишь один из энантиомеров а-амино-кислот. Животным скармливают смесь дэух энантиомеров аминокислоты, метаболизму подвергается только L-оптический изомер, а D-энан-тиомер выделяется с мочой. [c.252]

    В СВЯЗИ с развитием химии белка потребовались новые, быстрые н точные методы определения аминокислот с использованием малых количеств исследуемого вещества. Для этих определений методика распределительной хроматографии на колонке оказалась слишком трудоемкой. На разделении аминокислот неблагоприятно сказывались адсорбционные свойства используемого инертного носителя, чаще всего силикагеля. В 1943 г. Мартин, Консден и Гордон использовали для анализа малых количеств аминокислот фильтровальную бумагу в качестве носителя неподвижной водной фазы, а в качестве подвижной фазы смесь органического растворителя с водой. Для разделения смеси веществ на полоску фильтровальной бумаги наносили маленькую каплю исследуемого раствора и этот конец полоски помещали в растворитель, так чтобы нанесенная капля была несколько выше поверхности растворителя. При этом отдельные компоненты смеси распределяются между подвижной и неподвижной фазами соответственно различию значений их коэффициентов распределения. Даже при незначительных различиях коэффициентов распределения разделяемые вещества образуют отдельные зоны (пятна) на полоске бумаги. [c.53]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Использование животных для разделения аминокислот затруднительно и дорого. Поэтому вместо животных применяют обычно ферменты, которые хиральны и по-разному реагируют с энантиомерами одной и той же аминокислоты. Многие ферменты катализируют реакцию только одного энантиомера. Вот почему, если подействовать ферментом на смесь энантиомеров, то один из них подвергнется превращению, а другой останется без изменения и может быть выделен. [c.392]

    Анализ аминокислотного состава включает полный гидролиз исследуемого Б. или пептида и количеств, определение всех аминокислот в гидролизате. Для гидролиза обычно используют 5,7 н. водный р-р НС1, а при анализе содержания триптофана-4 н. метансульфоновую к-ту, содержащую 0,2% ЗЧ2-аминоэтил)индола, или кипячение со щелочью. Количеств, определение аминокислот в гидролизате проводят с помощью аминокислотного анализатора. В большинстве таких приборов смесь аминокислот разделяют на ионообменных колонках, детекцию осуществляют спектрофотометрически по р-ции с нингидрином или флуориметрически с использованием флуоре-скамина или о-фталевого диальдегида. В последнем случае можно анализировать до 0,1-0,05 нмоль аминокислоты. [c.250]

    Для получения свободных АК белки подвергают химическому гидролизу в достаточно жестких условиях нагревание в. 6 н. НС1 при 110°С в течение 20-22 ч. При этом разрываются пептидные связи и частично разрушаются некоторые АК для предотвращения глубокого распада АК гидролиз проводят в запаянных ампулах, без доступа воздуха. В результате химического гидролиза получают смесь аминокислот или белковый гидролизат, который может быть использован для изучения аминокислотного состава прогидролизованного белка. [c.17]

    Преимущества я-иодбензолсульфо- Ч-хлорида (пипсилхлорида) как радиореагента стали видны уже из первых сообщений о его применении в определении аминокислот [79—82]. При использовании пяти—десятикратного избытка этого реагента первичные и вторичные алифатические амины количественно превращаются в соответствующие сульфамиды. При этом эмульгированную смесь реагента, образца и МагСОз или 1МаНС0з кратковременно нагревают при температуре 90—100 °С. Избыток сульфохлорида легко гидролизуется до сульфокислоты, которую в свою очередь легко выделить из продуктов реакции, используя ионообменную смолу, или путем экстракции. [c.308]

    После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]

    Другой способ удаления воды рекомендован Зомзели и др. [131]. Основываясь на ранее описанной методике [57], авторы добавляли к кислому этанольному раствору кеталь, полученный из соответствующего спирта и ацетона (диалкоксипропан). Кеталь удаляет воду, используя ее на расщепление до спирта и ацетона. Однако, согласно некоторым данным [19], ни метод Джонсона и др. [42] с использованием НС1 вместо НВг, ни последняя методика [131] не годятся для получения н-амиловых эфиров. Применение кислых ионообменных смол [77] также не привело к удовлетворительным результатам. Количественное образование н-амиловых эфиров идет лишь при более высокой температуре и при введении в смесь газообразного НС1 [19]. Превращение аминокислот в высшие эфиры затруднено тем, что определенные аминокислоты, такие, как цистин, очень плохо растворимы в спиртах, насыщенных НС1. н-Бутиловые эфиры были приготовлены [53] переэтерификацией [c.320]

    На рис. 1 показано разделение синтетической смеси аминокислот и дипептидов в виде М-ТФА-метиловых эфиров на стеклянной капиллярной колонке с программированием температуры. При использовании данной колонки, изготовленной для специальных задач, можно видеть две отличающиеся области аминокислот (от аланина до фенилаланина) и дипептидов (от аланилаланина до фенилаианилфенилаланина). Ясно, что эта специфическая смесь содержит не все возможные аминокислоты и дипептпды. [c.143]

    Так как в пищевой промышленности и медицине применяют только ь-изомеры аминокислот, рацемические смеси необходимо разделять на отдельные энантиомеры. Для этой цели используют различные хроматографические методы, в том числе и основанные на ионном обмене. Химические методы разделения, связанные с взаимодействием рацематов с определенными асимметрическими соединениями, достаточно сложны и не находят применения в промышленных условиях. Гораздо более эффективным является ферментативный метод разделения рацематов аминокислот, впервые разработанный и использованный японскими исследователями. В основу метода положена способность фермента ацилазы ь-аминокислот специфически гидролизовать только ацилированные ь-аминокислоты без воздействия на О-сте-реоизомеры. Ацилированные аминокислоты, полученные методом химического синтеза, подвергаются воздействию иммобилизованного фермента ацилазы, причем после полного ферментативного гидролиза образуется смесь ацилированной о-аминокислоты и свободного ь-стереоизомера, легко разделяющиеся простой кристаллизацией или посредством ионообменной хроматографии. [c.22]

    При первоначальной разработке метода Мартин и Синдж разделили смесь ацетилированных аминокислот на носителе — силикагеле — с водой в качестве стационарной фазы. Подвижная фаза представляла собой смесь хлороформа, бутанола и воды. Метод был использован для определения состава аминокислот различных нротеинов 5 . Свободные аминокислоты были разделены на крахмале, в качестве неподвижной фазы использовалась вода, подвижной — смешанный органический растворитель, насыщенный водой [c.541]

    Выделение меченых аминокислот достигается следующим образом. Водоросли настаивают в 80% этиловом спирте, затем отделяют центрифугированием и подвергают гидролизу 6н. H I в запаянной ампуле при 105—110° С. Белковый гидролизат упаривают в вакууме и очищают от углеводов, органических кислот и гуминоподобных веществ. Раствор, содержащий смесь аминокислот пропускают через катионит КУ-2 в Н+-форме. Использование в качестве элюента соляной кислоты различной концентрации позволяет разделить смесь на отдельные группы аминокислот (рис. 14). Разделение групп аминокислот на индивидуальные соединения можно осуществить методом препаративной бумажной хроматографии. [c.57]

    Точную аналогию с определением соответствующих элементов с помощью изотопного разбавления представляет использование меченых атомов для определения соответствующих соединений, присутствующих в смеси. Количественное определение содержания данного вещества в смеси обычными методами требует реагента, специфичного для этого вещества. Если такого реагента не существует, то необходимо количественно выделить индивидуал)эНое соединение из смеси. Применение предположительно специфического реагента опасно при наличии в смеси соединений со сходной структурой. Выделение индивидуального соединения обычно ставит нас перед альтернативой выделение малого количества рассматриваемого соединения без примесей либо полное его выделение с примесями чистота и полнота выделения взаимно исключают друг друга. В качестве примера можно привести исследование [1701] гидролизатов белков, содержащих около 24 а-аминокислот, количественное содержание которых должно быть определено для установления структуры белка. При использовании метода изотопного разбавления, представляющего единственный метод полного анализа, необходимо синтезировать каждую из имеющихся а-аминокислот в изотонически обогащенной форме. Например, глицин, содержащий обогащенный азот, образует неразделимую смесь с необогащенным глицином. Выделение малых количеств чистого глицина с последующим измерением отношения в нем позволит точно оценить содержание глицина в смеси. [c.114]

    Смесь равных частей двух энантиомеров называется рацемической см ЫО. Такую смесь невозможно разделить без использования хиральных реагентов эта операция называется расщеплением (или разделением). Рацемат может кристаллизоваться в виде смешанных кристаллов. Температу-1 ры плавления обоих антиподов совпадают, но отличаются в общем случае от температуры плавления рацемата. Обычные методы синтеза, исходя из нехи-ральных веществ, всегда приводят к рацематам. Только применением особых методов, позволяющих осуществить так называемый асимметрический синтез (гл. 10), можно получить продукт, в котором один из энантиомеров будет преобладать. Биологические синтезы, протекающие под влиянием ферментов — хиральных соединений с высокой специфичностью,— приводят к чистым оптически активным веществам. Под влиянием данного фермента образуется только один из двух возможных энантиомеров аминокислоты, сахара, алкалоида и т. п.,  [c.95]

    В последнее время наряду с детектированием по реакции с нингидрином широкое распространение получило детектирование по флуоресценции продуктов реакции с флуорескамином [93]. Реакция идет при комнатной температуре, а в остальном анализ напоминает обычную схему с использованием нингидрина [94]. Анализируемые вещества разделяются по колонке с ионообменной смолой, затем проходят через реакционную спираль (реактор), а флуоресценция регистрируется с помощью флуориметра. Показано, что эту систему можно использовать для анализа белковых гидролизатов [95, 96]. Схема модифицированного анализатора аминокислот приведена на рис. 32.11. Для работы на одной колонке необходимо три микронасоса первый — для подачи буферного раствора на колонку второй — чтобы довести величину pH элюата до значения 9 и третий предназначен для смешивания элюата с реагентом, представляющим собой раствор флуорескамина в ацетоне. Скорость реакции достаточно высока, что позволяет использовать короткую реакционную спираль. Далее смесь проходит через проточную кювету флуориметра, и интенсивность флуоресценции регистрируется самописцем. Одновременно много внимания было уделено выделению продуктов реакции аминов с флуорескамином, обладающих низкой полярностью, для анализа которых могла оказаться пригодной высокоскоростная хроматография. Более того, в этом случае можно было бы обойтись без реакционной спирали. Такой путь оказался приемлемым для анализа первичных аминов [97—99]. Что касается аминокислот, то большинство из них, вопреки ожиданиям, давали с флуорескамином два продукта реакции, соотношение которых определялось природой аминокислоты. [c.340]

    Теперь известно много примеров предпочтительного использования микроорганизмами одного из двух энантномеров и установлено, что это явление вызвано действием энзимов, необходимых для роста микроорганизмов. Энзимы, являющиеся катализаторами биохимических реакций, представляют собой белки и, подобно всем белкам, построены из остатков а-аминокислот, связанных между собой в длинные цепи. При гидролизе этих белков образуется смесь входивших в их состав кислот  [c.103]

    Впервые метод колоночной распределительной хроматографии был использован Мартином и Сингом (Martin, Synge, 1941) для разделения ацетилированных аминокислот. Носителем неподвижной фазы служил силикагель, в качестве подвижного растворителя авторы применили смесь хлороформа с возрастающей концентрацией /(-бутанола. За разработку метода распределительной хроматографии Мартину и Сингу в 1952 г. была присуждена Нобелевская премия. [c.73]

    Хотя растительные белки в целом по питательной ценности уступают животным белкам, тем не менее при определенной комбинации растительных белков организм обеспечивается полной и сбалансированной смесью аминокислот. Так, например, белки кукурузы содержат мало лизина, но достаточное количество триптофана, тогда как белки бобов богаты лизином, но содержат мало триптофана. В отдельности ни один из этих белков нельзя считать хорошим . Однако смесь бобов и кукурузь содержит необходимое человеку количество незаменимых аминокислот. Такая смесь, известная под названием суккоташ (блюдо из кукурузы и бобов), была интуитивно открыта индейцами Нового Света. Раздельное использование только бобов на завтрак и только кукурузы на обед неизбежно нарушит полезную комбинацию этих растительных белков. Жители Востока также научились комбинировать определенные растительные продукты для получения полной с точки зрения питательной ценности смеси аминокислот примером такой комбинации может служить сочетание риса с соевыми бобами. В Центральной и Южной Америке, где недостаток белков в пище был обычным явлением, международный комитет по проблемам питания включил в рацион полноценную питательную смесь, известную под названием Тпсарагша , содержащую сравнительно дешевые растительные белки, главным образом кукурузы, сорго и хлопковых растений. Каждый из компонентов этой смеси сам по себе обладает низкой питательной ценностью, однако в совокупности они образуют белковую смесь, эквивалентную по питательной ценности белкам молока. [c.825]

    Тиоловые эфиры обладают некоторыми преимуществами по сравнению с большинством других смешанных ангидридов вследствие их устойчивости к действию слабых оснований, безводных кислот и к нагреванию. Конденсация тиолового эфира а-ациламинокислоты с натриевой солью аминокислоты обычно приводит к образованию чистого производного дипептида [336]. Например, при конденсации тиофенилового эфира карбобензилоксиглицина с фенилаланином в щелочном растворе образуется карбобензилоксиглицилфенилаланин и тиофенол. Если реакционную смесь подвергнуть экстрагированию эфиром, то таким путем можно удалить непрореагировавший тиофениловый эфир карбобензилоксиглицина и тиофенол. В этом случае после подкисления в осадок выпадает только продукт реакции. При использовании большинства других смешанных ангидридов под-кисление вызывает выпадение в осадок непрореагировавшего карбобензилоксиглицина вместе с продуктом реакции. [c.261]


Смотреть страницы где упоминается термин Аминокислот смеси, использование: [c.278]    [c.238]    [c.238]    [c.658]    [c.142]    [c.190]    [c.261]    [c.96]    [c.29]    [c.562]    [c.48]    [c.48]    [c.114]    [c.1002]    [c.143]    [c.190]    [c.280]   
Биохимия аминокислот (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте