Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ненасыщенные йодного числа

    Саломас технический (ВТУ РСФСР 739—63) представляет собой продукт гидрогенизации растительных масел, при которой глицериды ненасыщенных кислот (например, олеиновой) переходят в глицериды насыщенных кислот и жидкие продукты превращаются в твердые. Температура застывания его 40—54° С, кислотное число 5—9 мг КОН на 1 г, йодное число 31—65. Саломас широко используется в производстве различных мыльных смазок для получения натриевых, кальциевых и других мыльных загустителей. [c.681]


    В состав глицеридов входят насыщенные и ненасыщенные высшие кислоты алифатического ряда с четным числом углеродных атомов пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая и др. Большое количество самых разнообразных ненасыщенных жирных кислот входит в состав жиров, начиная с кислот, содержащих одну двойную связь, до клупанодоновой кислоты, у которой пять двойных связей. Разнообразие состава жиров обусловлено еще содержанием в них различных изомеров жирных кислот, циклических кислот, оксикис-лот (как насыщенных, так и ненасыщенных). В процессе хранения жиры нередко подвергаются глубоким изменениям, протекающим на воздухе в присутствии воды и ферментов, что обусловлено сложным химическим составом их и значительным количеством непредельных соединений. Растительные масла в основном состоят из эфиров ненасыщенных жирных кислот с одной двойной (олеиновой), двумя (линолевой) и тремя (линоленовой) двойными связями. Поэтому они весьма неустойчивы при хранении на воздухе, легко окисляются и прогоркают. Процессам окисления растительных масел обычно предшествует расщепление их (гидролиз) эфирных связей с накоплением свободных жирных кислот. При исследовании масла (жира) определяют кислотность, йодное число, число омыления и другие химические и физические показатели, которые характеризуют его качество и химическую природу. [c.178]

    Для характеристики различных жиров используют йодное число, число омыления и кислотное число. Йодное число служит мерой содержания ненасыщенных жирных кислот. Под этим термином понимают количество иода в граммах, которое могут присоединить 100 г жира. Числом омыления называют количество гидроксида калия в миллиграммах, необходимое для омыления 1 г жира. Кислотное исло измеряется в миллиграммах гидроксида калия, расходующихся на нейтрализацию 1 г жира. [c.645]

    Молекулярный вес Йодное число, г 12/100 г. . . . Среднее число ненасыщенных связей на молекулу. . Содержание серы, вес. %. ... Гидроксильное число, мг КОН/г. Кислотное число, мг КОН/г. . . Эфирное число, мг КОН/г. . . Карбонильное число, мг КОН/г [c.238]

    Жиры характеризуют следующие физико-химические константы температура плавления, (молекулярная масса тем выше, чем больше жирных кислот, входящих в состав жира) йодное число, характеризующее количество ненасыщенных жирных кислот кислотное число, которое показывает содержание свободных жирных кислот в жире число омыления, которое характеризует количество сложных эфиров в жире. [c.27]


    Для того чтобы снизить в нефтепродуктах содержание серы, азота и кислорода на 1% требуется для S — 6,1, для N — 20,8 и для Oj — 12 водорода. Расход водорода на гидрирование ненасыщенных соединений рассчитывают но бромному или йодному числам продукта для расчета можно воспользоваться также характеризующим фактором, молекулярным весом или плотностью продукта. [c.100]

    Ж обладают низким давлением паров и кипят только в высоком вакууме ( 250 °С при 0,001 мм рт ст ) Плотность Ж зависит от мол массы жирных к-т и степени их ненасыщенности н м б рассчитана по ф-ле 5 = 0,8475 + -1-0,0003 числа омыления Ч- 0,00014 йодного числа Температурный коэф объемного расширения Ж 0,0007/К Показатель преломления Ж зависит от мол массы жирных к-т и степени их ненасыщенности по° = 1,4643 — 0,000066 [c.156]

    При анализе состава Р. м. кол-во высших жирных к-т, образующихся при омылении, характеризуют числом омыления, степень ненасыщенности-йодным и родановым числами. [c.193]

    Что такое йодное число Каков механизм взаимодействия йодной воды с ненасыщенными соединениями  [c.53]

    Содержание ненасыщенных соединений в нефти и продуктах её переработки оценивают бромным или йодным числом [c.76]

    Число двойных связей, или степень ненасыщенности жирных кислот, определяют при помощи условного показателя — йодного числа. [c.12]

    В процессе гидрогенизации в молекулах ненасыщенных жирных кислот восполняется недостаток водорода и они превращаются в-насыщенные. Так, олеиновая кислота, присоединяя два атома водорода, переходит в стеариновую. Для того чтобы насытить-линолевую кислоту, она должна присоединить четыре атома водорода, а линоленовая — щесть и т. д. Чем больше водорода присоединяется к ненасыщенным жирным кислотам, тем выше температура плавления и титр гидрированных жиров и ниже их йодное число. [c.22]

    В практике промышленной гидрогенизации жиров не все ненасыщенные жирные кислоты переводят в насыщенные. Процесс прекращают, когда жир приобретает необходимую температуру плавления, титр и соответствующее йодное число. [c.22]

    Определение физических и химических показателей жира. Качество жира и его происхождение определяют, исследуя его химические свойства. Так, при хранении жира происходит расщепление глицеридов, сопровождающееся накоплением свободных жирных кислот, т. е. возрастанием кислотности. Повышенная кислотность жира указывает на снижение его качества. Ненасыщенные жирные кислоты окисляются по двойным связям, в результате чего в жире увеличивается количество перекисей, альдегидов и других продуктов распада. Они сообщают жиру прогорклый вкус. Уменьшение йодного числа и повышение числа омыления в процессе хранения масла являются показателями его порчи. [c.182]

    В кислотной части масла преобладают ненасыщенные жирные кислоты массовая доля линолевой кислоты 60—65%. Йодное число таллового масла 130—140 г J2/IOO г. [c.85]

    Из облагороженного сульфатного мыла (из древесины лиственных пород) разложением серной кислотой по обычной технологии получают очищенное от нейтральных веществ сырое талловое масло. Обычной вакуумной дистилляцией с присадкой водяного пара из него можно выделить до 70 % жирных кислот в виде продукта высокой степени чистоты (доля жирных кислот 96—97 %, неомыляемых веществ 1—2 /о) и высокой непредельности (йодное число до 170 г J2/100 г продукта). Продукт пригоден для производства высококачественных алкидных смол и в других областях применения ненасыщенных жирных кислот. [c.145]

    Степень ненасыщенности триглицеридов отражается в количественной характеристике, называемой йодным числом, которое равно количеству иода (в граммах), присоединяющемуся к 100 г жира. Ненасыщенные цепи растительных масел можно насытить каталитическим присоединением водорода (этот процесс называется гидрогенизацией жиров)  [c.124]

    Для характеристики ненасыщенных кислот следует пользоваться, по возможности, всеми способами, подтверждающими наличие двойных связей образованием продуктов присоеди[1е ния брома, окислением перманганатом, озоном или гидроперекисями кислот, гидрированием, получением амидов, анилидов и сложных эфиров, а у высших ненасыщенных жирных кислот — оиределением йодного числа. [c.281]

    PeaKUiiH алкилирования парафинов, даюии е разветвленные парафины, вероятно, особенно важны. Поэтому содержание олефинов и других ненасыщенных углеводородов в бензинах Удри обычно значительно ниже, чем содержание их в бензинах обычного крекинга. Интересно, что непредельность бензина крекинга Удри можью уменьшить при помощи новой обработкл его глиной. Содержание ненасыщенных в бензинах процесса Удри зависит от условий процесса, особенно от времени реакции. Ненасыщенность может быть высокой при высоких температурах и особенно при малом времени контакта. При этих условиях объем вторичных реакций превращения образовавшихся ненасыщенных углеводородов может быть очень ограничен. Когда время реакции очень мало или пропускаемое количество сырья через реактор очень велико, содержание ненасыщенных (йодное число) в бензинах Удри может быть таким же высоким, как и в бензинах термического крекинга. Это показывает, что вторичные реакции, ускоряемые глиной, требуют значительно больше времени, чем первичные реакции разложения, активируемые тем же катализатором. Особенно интересно, что октановые числа более насыщенных бензинов Удри заметно не отличаются от октановых чисел менее насыщенных бензинов. Время реакции должно быть значительным при производстве более стабильных авиационных бензинов и незначительным при получении моторных бензинов. [c.158]


    Некоторые ненасыщенные полимеры, полученные вга основе дивиниловых мономеров (обычно в виде растворов реакционноспособных полимеров в соответствующих мономерах), нашли практическое применение. Эти композиции отверждают на конечной стадии какого-либо технологического процесса при нагревании или в присутствии свободнорадикальных инициаторов и получают сильно сшитый продукт. Важным представителем этого типа полимеров является низкомолекулярный полимер диаллилфта-лата, растворимый в различных мономерах, в том числе и собственном мономере, и дающий при сополимеризации отвержденный продукт [361]. Аналогичный форполимер диэтиленгликоль-быс-аллилкарбоната выпускается под торговой маркой СК-39. Один из полимеров рассматриваемого класса вырабатывается на основе низкомолекулярного [М 8000—10000) сополимера бутадиена со стиролом, обладающего высокой степенью ненасыщенности (йодное число 300). Этот сополимер растворим в стироле и других мономерах и при сополимеризации с ними сшивается [362]. Практиче- [c.200]

    Классификация. Общепринятой является классифх -кация М. р. по их ненасыщенности (йодному числу) и, соответствепио, способности к высыханию (см. табл. [c.70]

    В нашей стране больше всего вырабатывается жирных кислот из соапстоков хлопкового масла. Это связано с тем, что хлопковое масло содержит ядовитые примеси (госсипол и др.) и для использования в пищевых целях его надо обязательно рафинировать. В соапстоки идет до 5% масла. Жирные кислоты соапстока хлопкового масла имеют низкую ненасыщенность (йодное число около 100). Поэтому их фракционируют ректификацией и выделенную непредельную фракцию используют для синтеза алкидов. [c.214]

    Распределение серы в термогидрогенизате для обоих видов сырья однотипно и количественно связано с уровнем исходного содержания серы в сырье. Сера, как видно, переходит и в дистиллятные продукты термодеструкции высокомолекулярной части. Практически вся масса образовавишхся дистиллятных продуктов имеет ненасыщенный характер (см. рис. 2.10, i). Йодное число бензиновых фракций практически такое же, как и в типичных процессах висбрекинга нефтяных остатков, но головные фракции имеют пониженное значение йодных чисел. [c.62]

    Еажное промышленное значение данного процесса связано с превращением малоценных ненасыщенных жиров и масел, жидких нри обычной температуре, в твердые насыщенные жиры. Поэтому процесс называют отверждением жиров или их гидрогениза-циеи. Жидкие масла и жиры (хлопковое, кукурузное, соевое, льняное, рыбий жир и др.) состоят из глицеридов ненасыщенных кислот (олеиновой, элеостеарниовой, эруковой и др.). При их гидрировании на никелевом катализаторе двойные связи насыщаются и обрг зуется твердый жир, имеющий небольшое йодное число  [c.507]

    Хлопковое ыасло получают иа семян хлопчатника. Оно состоит в основном из ненасыщенных жирных кислот, но может содержать до 25% насыщенных жирных кислот. Плотность его 0,918—0,932, температура застывания около 3° С. Промышленностью выпускается рафинированное масло, идущее в основном для пищевых целей, и нерафинированное. Оба этих вида масла могут быть высшего, первого и второго сортов, которые различаются по кислотным числам (ГОСТ 1128—55). Кислотное число нерафинированного масла высшего сорта не более 4, первого — не более 7 и второго — не более 14 мг КОН на 1 г. Число омыления 190—200, температура вспышки не ниже 225 С йодное число 101—116. Неомыляемых веществ должно содержаться не более 0,1—0,2%. [c.677]

    Экспериментально установлено [105], что кокс обладает нена-сыщеныостью. Увеличение продолжительности крекинга приводит к уменьшению непредельности кокса. Особенно быстро это происходит Б начале цикла каталитического крекинга. В течение первого часа йодное число кокса снижается со ПО до 60, т. е. почти вдвое, по прошествии еще 3 ч йодные числа кокса стабилизируются на уровне 30—35. Таким образом, кокс, полученный даже прн очень большой продолжительности крекинга, обладает некоторой ненасыщенностью, вероятно, за счет повышенной непредельности более поздних отложений. Было показано, что при увеличении объемной скорости подачи сырья йодное число снижается незначительно. При изменении объемной скорости подачи сырья с 0,27 до 1,74 ч , т. е. в шесть с лишним раз, йодное число кокса уменьшилось только на 11%. Повышение температуры крекинга с 460 до 520 °С привело к увеличению йодного числа кокса с 38 до 60 [105]. [c.99]

    Из данных табл. 1 видно, что в результате не только гид-роочистки, но и гидрокрекинга и глубокого гидрирования полностью удалить из топлива гетероорганические и ненасыщенные соединения не удается. Суммарное количество адсорбционных смол в топливах составляет 20—35 мгЦОО мл, а их йодные числа колеблются в пределах 0,2—0,75 г. Оста- [c.3]

    Учитывая, что основную массу продуктов окисления составляют десорбируемые метанолом соединения, углеводородный радикал которых имеет бензольное кольцо и непредельную связь в боковой цепи, можно полагать, что окислению преимущественно подвергались индены и углеводороды типа стирола при этом в инденах разрывается связь между инденовым и бензольными кольцами. Наличие инденов в топливах Т-6 и Т-8 обнаружено газохроматографическим методом, а их йодные числа, равные юоответственно 0,22 и 0,45 г/г/ЮО г, подтверждают, что в них содержатся небольшие количества ненасыщенных углеводородов. [c.21]

    Продукты термического крекинга используют как компоненты топлив невысокого качества. В лигроинокеросиновых фракциях термического крекинга Содержатся ненасыщенные углеводороды, чем эти фракции сильно отличаются от аналогичных продуктов прямой перегонки. Так, йодное число фракции прямой перегонки равно 0,4, а фракции 190—300° С термического крекинга — 61 [22]. Такое высокое йодное число обусловлено не только содержанием алкенов, но и присутствием довольно большого количества алкенилароматических углеводородов, а также углеводородов с двумя ненасыщенными связями. Поэтому продукты термического крекинга нестабильны — они интенсивно окисляются кислородом воздуха даже при обычных условиях. Следовательно, лигроино-керо-синовые фракции термического крекинга можно рассматривать как доступное сырье для получения кислородных соединений. Кроме того, после извлечения продуктов окисления значительно улучшается качество товарных топлив, полученных в результате термического крекинга. [c.46]

    Спирты. Из смеси кислородных соединений крекинг-керосина азербайдл анских нефтей спирты выделяли через борные эфиры. Выход спиртов составил 0,37 вес. % на топливо. Они характеризовались следующими данными пределы выкипания 110 —185° С при 2,5 мм рт. ст. р1° 1,013 средний молекулярный вес 224 Ид 1,5372 йодное число 170 г I2/IOO г, указывающее на присутствие соединений в среднем с более чем одной ненасыщенной связью. Эмпирическая формула спиртов ( isHjaOj g) свидетельствует о возможном присутствии гликолей. [c.252]

    Нес рав енно большее значение имеет вопрос о старящем действии масла на пятно, как компонента такового иначе говоря, вопрос о том, содействует ли длительное нахождение масла в пятне трудности удаления последнего. Первым, кто обратил внимание на этот вопрос, был Бэкон (см. ссылку 47). Важные в этом отношении исследования были произведены Утермоленом (см. ссыл ку 48), который установил, что старящее действие тесно связано со степенью и характером ненасыщенности молекулы масла. Так, например, минеральное масло (насыщенный керосин) не производило указанного действия. И, наоборот, в значительной степени ненасыщенные масла, как-то хлопковое и льняное, заметно способствовали старению пятна отражательная способность ткани уменьшалась в зависимости от времени нахождения на ней таких пятен. Тунговое (древесное) масло не выказывало старя-ш его действия, причем, однако, следует оговориться, что удаление пятен, содержащих это масло, вообще оказалось невозможным. Не производило заметного старящего действия и К01К0С0-вое масло, обладающее очень малым йодным- числом. [c.42]

    Степень ненасыщенности жиров определяют по йодному числу — количеству иода в граммах, которое присоединяется к 100 г жира. Для определения йодного числа применяют растворы хлористого иода I I, бромистого иода 1Вг или меркуриодхлорида Hg b, которые более реакдионноспособны, чем сам иод. Содержание в жире жирных кислот, отгоняющихся с водяным паром (кислотны С12 и ниже), выражается числом Рейхерта—Мейсля. Если надо охарактеризовать область плавления жира (его титр), указывают температуру, при которой расплавленный жир начинает затвердевать. Число омыления жира, выраженное количеством едкого кали в миллиграммах, необходимым для гид-ролиза 1 S жира, характеризует его средний молекулярный вес. [c.587]

    Некоторые жиры содержат глицериды только трех или четырех различных кислот, другие — значительно больше. Например, коровье масло содержит производные четырнадцати кислот, в число которых входит н-масля ная кислота. Изомасляная кислота, имеюш ая разветвленную цепь с нечетным числом углеродных атомов в главной цепи (скелет изопрена), была выделена при омылении дельфиньей и китовой ворвани (3,2 и 13,6% соответственно). Степень ненасыщенности жира заметно зависит от температуры, при которой протекает биосинтез в организме. Теплокровные животные имеют тенденцию продуцировать твердые жиры (жидкие при температуре тела или немного выше ее). В составе жиров, синтезируемых в различных частях одного и того же органи.зма, могут на блюдаться некоторые различия. Так, масло выделенное из копыт крупного рогатого окота, имеет более высокое йодное число, чем жиры, выделенные из других частей тела. Отмечена неоднородность подкожного жира свиней, внешние слои которого обладают большей ненасьащенностью, чем внутренние. Следующее сравнение показывает поразительное влияние климата на состав льняного масла йодное число льняного масла из семян, выращенных в холодном климате Швейцарии, разно 190, а йодное число масла [c.588]

    ГИДРИРОВАНИЯ ЧИСЛО, масса водорода (в г), необхо-димая для гидрирования 10 кг орг. в-ва. Характеризует степень ненасыщенности в-ва. При определении Г.ч. через р-р анализируемого в-ва в СН,СООН при т-ре до 140°С пропускают Н . Г.ч. = ЮОООк , где Г-объем поглощенного И2, приведенный к нормальным условиям (в мл), -плотность при нормальных условиях (8,988 10 г/см ). Иногда гидрирование проводят в присут. катализатора (платиновая чернь, никель Ренея, Р<1 на угле). После гидрирования в-во можно выделить в чистом виде и дополнительно исследовать (напр., провести элементный и функциональный анализ). Г. ч. определяют у жиров, карбоновых к-т с двойными связями в ое- и р-положениях, а также у соед. ацетиленового ряда, для к-рых не удается установить йодное число. Е.А. Боидарекыя. [c.554]

    Наконец органические галоидные соединения имеют большое практическое значение в аналитическом и диагностическом отношениях, особенно в области жиров и масел. Так называемое йодное число Гюбля какого-нибудь жира обозначает количество граммов иода, поглощаемое при определенных условиях 100 г вещества. Это число является одной из важнейших констант для определения чистоты масел и жиров, так как оно позволяет устанавливать соотношения. между насыщенными и ненасыщенны.ми глицеридами. Иодкое число растительных высыхающих. масел равно 130—200, полувысыхающих 95—130, а невысыхающих —ниже 93 для животных масел земных животных число ниже 80, для морских животных — обычно выше 100 Результаты определения йодного числа имеют также большое значение для выяснения структуры кислот ряда олеиновой кислоты че.м дальше от карбоксильной группы расположена двойная связь, тем больше найденные йодные числа приближаются к теоретическим (с.м. также стр. 392, 426, 427, 430 и 434). [c.301]


Смотреть страницы где упоминается термин Ненасыщенные йодного числа: [c.447]    [c.462]    [c.68]    [c.408]    [c.235]    [c.478]    [c.110]    [c.204]    [c.589]    [c.589]    [c.95]    [c.131]    [c.253]    [c.51]    [c.16]    [c.70]   
Количественный органический анализ по функциональным группам (1983) -- [ c.293 ]




ПОИСК





Смотрите так же термины и статьи:

Количественная оценка степени ненасыщенности липидов по йодному числу



© 2024 chem21.info Реклама на сайте