Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибоза, строение

    На рис. 21-21 показано строение молекулы аденозинтрифосфата (АТФ), играющего ключевую роль в биохимическом процессе запасания энергии. Эта молекула построена из аденина (см. рис. 21-3), рибозы (моносахарид с пятью атомами углерода) и трех связанных в цепочку фосфатных групп. Концевая фосфатная группа в АТФ может гидролизоваться, или отщепляться, с присоединением к продуктам ионов ОН и Н от воды, в результате чего образуются ортофосфорная кислота и аденозиндифосфат (АДФ). Далее АДФ может снова разлагаться с образованием еще одной фосфатной группы и аденозинмонофосфата (АМФ). Наконец, отщепление последней фосфатной группы приводит к образованию аденозина. При отщеплении каждой из первых двух фосфатных групп высвобождается свободная энергия 30,5 кДж моль а при отщеплении третьей-только 8 кДж моль" Именно АТФ, а точнее его первая фосфатная связь (крайняя слева на рисунке) является главным местом запасания энергии в любой живой клетке. Каждый раз, когда молекула глюкозы биохимиче- [c.327]


    Общее строение нуклеиновых кислот строго доказано. При гидролизе нуклеиновые кислоты распадаются на соответствующие нуклеотиды. Место связи рибозы с фосфорной кислотой установлено с помощью избирательного гидролиза. При этом в зависимости от природы фермента получают нуклеозид-5 -монофосфат, или нуклеозид-3, 5 -ди-фосфат, или нуклеозид-З -монофосфат, откуда следует, что остатки рибозы связаны в нуклеиновых кислотах фосфорной кислотой в положении 3,5. Природа оснований установлена путем их идентификации в продуктах гидролиза нуклеотидов. Наконец, нуклеиновые кислоты титруются как одноосновные кислоты. Это указывает на то, что две гидроксильные группы фосфорной кислоты связаны с двумя остатками рибозы. [c.361]

    При отделении нуклеиновых кислот от других составных частей клетки получают очищенные кислоты в виде волокнистых осадков. Гидролиз очищенных нуклеиновых кислот дает три типа продуктов группу, состоящую из четырех оснований, сахар и фосфорную кислоту. Известны нуклеиновые кислоты двух видов, отличающиеся главным образом по строению сахара, образовавшегося в результате гидролиза. Рибонуклеиновая кислота (РНК) дает о-рибозу, в то время как дезоксирибонуклеиновая кислота (ДНК) — 2-дезокси-с-рибозу [c.316]

    По своему химическому строению нуклеотиды с одинаковым правом могут быть рассмотрены и как гетероциклические соединения, поскольку они содержат пиримидиновое или пуриновое ядро, и как производные сахаров, потому что все нуклеотиды содержат рибозу, дезоксирибозу или в виде очень редких исключений какой-либо иной из моносахаридов  [c.173]

    Если нуклеотид подвергнуть кислому гидролизу, то отщепляется гетероциклическое основание и удается выделить фосфорилированный моносахарид. При осуществлении кислого гидролиза миграция остатка фосфорной кислоты из положения 5 в положении 2 или 3 не происходит, однако 2 -фосфаты и З -фосфаты в этих условиях превращаются один в другой. Поэтому, для того чтобы полученный при установлении строения выделенного фосфата рибозы результат мог быть полезным при суждении о строении исходного нуклеотида, необходимо исключить возможность миграции фосфатного радикала между 2 - и З -положе-ниями. [c.217]

    В настоящее время доказано, что при гидролизе нуклеотидов на сульфосмолах такой миграции не происходит, и полученный при этом фосфат рибозы соответствует по строению исходному нуклеотиду. Таким образом, проводя гидролиз нуклеотидов в подходящих условиях и исследуя строение получающегося фосфата рибозы, мы можем Достаточно строго установить положение фосфатного остатка в моле-.куле. [c.217]


    Суждение о строении аденозинтрифосфата (АТФ) основано на следующих данных. При гидролизе АТФ в присутствии минеральных кислот он распадается на аденин, рибозу и фосфорную кислоту (3 моля). [c.231]

    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]

    Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту  [c.97]

    ТФ —здесь трифосфат, МФ —монофосфат). На рис. 2.5 пока-но строение цепи ДНК. Цепь РНК построена сходным образом, с тем отличием, что в ней вместо Т фигурирует У и атом Н у С-2 -рибозы заменен на ОН. [c.39]

    Для того чтобы связать проводимые в настоящем курсе задания по идентификации с настоящей научно-исследовательской работой, преподаватель может выбрать несколько типичных примеров природных соединений, таких, как никотин, о-рибоза, хинин, пенициллин G или витамин Вь и рассмотреть реакции идентификации, достаточные для решения вопроса о строении этих соединений. [c.20]

    При полном гидролизе сложного эфира рибозы образовалась смесь калиевых солей муравьиной и масляной кислот. Массовая доля калия в этой смеси солей оказалась больше 40,0%. Установите состав сложного эфира и его возможное строение (два изомера). [c.441]

    Углеводы. Моносахариды рибоза, дезоксирибоза, глюкоза, фруктоза, их строение, физические и химич,ес-кие свойства, роль в природе. Циклические формы моносахаридов. Полисахариды крахмал и целлюлоза. [c.505]

    Существует два различных типа нуклеиновых кислот — рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), разница между которыми заключается в строении моно-сахаридного остатка. В результате гидролиза РНК в зависимости от условий получают соединения производных пиримидина или пурина с рибозой и фосфорной кислотой — нуклеотиды или соединения производных пиримидина или пурина с рибозой — нуклеозиды. Конечными продуктами гидролиза являются урацил, тимин, цитозин, аденин, гуанин, D-рибоза и фосфорная кислота. [c.712]

    Из Л-рибозы при реакции удлинения углеродной цепи можно получить две эпимерные гексозы, Д-а л л о з у и Д-альтрозу, строение которых выражается формулами ХУИ1 и XIX. Так как /)-альтроза мо-л< ет быть превращена в оптически деятельную тетраоксиади-пиновую кислоту (Д-талослизевую кислоту), то формула XIX должна быть приписана ей, а формула XVIII — Д-аллозе озазоны обоих сахаров идентичны  [c.433]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    На рис. 16.14 показаны хроматограммы двух смесей изомеров ряда углеводов на силикагеле, модифицированном адсорбированными молекулами пиперазина, из элюента, содержащего около 90% ацетона, 10% воды и 4,4-10 г/см пиперазина. Изомерные пентозы удерживаются на аминированном пиперазином силикагеле из полярного элюента в том же порядке (начиная с ликсозы) рибоза-гСликсозаСксилозаСарабиноза, что и сходные по строению изомерные гексозы (начиная с манноз ы) талозаСманнозаС глюкоза<Сгалактоза. Из рисунка видно, что эти изомеры полностью разделяются в этих условиях. [c.302]


    Видимо, уже на ранних стадиях эволюции ДНК заменила РНК в качестве носителя генетической информации. Этому гипотетическому событию должны были способствовать большая химическая устойчивость ДНК. связанная с заменой рибозы на дезоксирибозу, и двуцепочечное строение, скрывающее целый ряд реакционноспособных группировок. Но несмотря на свои преимущества , ДНК постоянно подвергается химическим изменениям, как спонтанным, так и индуцируемым мутагенами и даже клеточными метаболитами. Еще одна обычная причина повреждений ДНК — радиация и ультрафиолетовое облучение. Большинство происходящих с ДНК изменений недопустимы они либо приводят к вредным мутациям, либо блокируют репликацию ДНК и вызывают гибель клеток. Поэтому все клетки имеют специальные системы исправления повреждений, репарации ДНК- Нарушение этих систем губительно. Репарация ультрафиолетовых повреждений ДНК нарушена у людей, страдающих тяжелым наследственным заболеванием — пигментной ксеро-дермой. Такие больные не могут бывать на солнце и обычно умирают в раннем возрасте от какого-либо злокачественного заболевания. [c.73]

    Сильноосновные белки связываются с сильнокислыми нуклеиновыми кислотами (молекула нуклеиновой кислоты по сложности строения аналогична белку и является чем-то вроде апопротеина). Неизвестно, связаны ли эти два типа веществ в основном солевой связью или также и ковалентной. Белковая часть может быть отделена от нуклеиновой действием трипсина или в ряде случаев обработкой раствором хлористого натрия соответствующей концентрации. Остающаяся нуклеиновая кислота представляет собой цепь из повторяющихся единиц, каждая яз которых состоит из остатков углевода, фосфорной кислоты и пуринового или пиримидинового основания. Углевод представлен D-рибозой или 2-дезокси- )-рибозой. Известные в настоящее время нуклеиновые кислоты содержат каждая только один вид сахара, но не оба вместе. Из дрожжей была впервые выделена нукле1Шовая кислота, содержа- [c.733]

    Отстав препарата выражается суммарной формулой ggH4,N,RO.,<,P4Na4-. представляет собой сложный эфир фос( )орной кислоты с рибозой и пуриновыми основаниями, Пут ем кислотного гид[юлиза нуклеиновой кислоты выделены аденин (а), гуанин (б), цитозин (й), тимин ( ), урацил ( )). имеюш.ие строение  [c.187]

    Эти два подкласса четко различаются как по строению входящих в них нуклеотидов, так и по их биологической функции. Нуклеиновые кислоты (обычно сокращенно обозначаемые НК) являются полимерными соединениями с кочень высоким молекулярным весом, достигающим 6 500 000—13 000 000. В зависимости ст того, содержат ли они в своем составе в качестве углеводного комионеита рибозу плп дезоксирибозу, онп называются рибонуклеиновыми кислотами (РНК) или дезоксирибонуклеиновыми кислотами (ДНК). Необходимость такого раздсотеиия диктуется не только различиями в химическом поведении РР1К и ДНК, но и различием их биологических функции. Н клениовые кислоты в комплексах с белками, известных под общи.м названием нуклеопротеидов, играют ключевую роль в процессах жизнедеятельности самых различных организмов. ДНК являются тем первичным химическим материалом, который лежит в основе сложного и далеко еще полностью не выясненного процесса передачи наследственных признаков при делении клетки, а следовательно, и всех процессов, связанных с размножением. Хотя о механизме такой передачи, механизме в чисто химическом смысле этого слова, еще мало что известно, однако решающая роль ДНК в процессе передачи биологического кода не вызывает никакого сомнения и может считаться в настоящее время экспериментально установленным фактом. [c.174]

    Поскольку мононуклеотиды являются сложными соединениями, исследование их как при установлении строения, так и при синтезе разбивается па неоколько этапсв. В связи с этим и в последующем изложении целесообразно вначале кратко рассмотреть вопрос о главных составляющих мононуклеотида — гетероциклических основаниях и моносахаридах, входящих в их состав — рибозе и дезоксирибозе после этого будет разобран вопрос о соединениях, которые получают нри частичном гидролизе нуклеотидов, содержащих только гетероциклическое ядро и остаток моносахарида и известных иод названием нуклеозидов, И лищь после этого будут расс.мотрены уже сами нуклеотиды. [c.175]

    В настоящее время известно несколько методов синтеза рнбозы, с помощью которых было окончательно доказано строение этого чрезвычайно важного в биологическом отношении моносахарида. Кроме того, был разработан препаративный метод ее синтеза, так как получение рибозы из природных источников, которыми чаще всего служат нуклеиновые кислоты, не может покрыть все возрастаюи1,ую потребность в этом [c.186]

    Как уже упоминалось, нуклеозндами называются соединения, полу-чающи бся при частичном гидролизе мононуклеотидов И содержащие гетероциклическое оонование и остаток моносахарида. Установление строения нуклеозидов и их синтез был первым этапом в познании нуклеиновых кислот и других нуклеотидов. В зависимости от того, содержат ли нуклеозиды в качестве углеводной компоненты рибозу или деэоксири-бозу их называют рибонуклеозидами и дезоксирибонуклеозидами. [c.190]

    Выделение при гидролизе аденозин-5 -фосфата, а также результаты, полученные при окислении АТФ йодной кислотой, и образование им комплекса с борной кислотой указывало на то, что гидроксильные группы у С (2) и С(з) в остатке рибозы свободны и фосфатная группа АТФ находится только у С (5)-атома рибозного остатка. Из этих данных вытекает, что АТФ является производным аденозина, у которого к пятому углеродному атому в рибозном остатке привязана цепь, построенная из трех остатков фосфорной кислоты. Иными словами, АТФ является полифосфатом аденозина. Для полного установления строения этого соединения остается только решить вопрос о том, является ли полифос-фатная цепь в АТФ линейной или разветвленной, т. е. сделать выбор между структурами (VII) и (VIII). [c.232]

    При кислотном гидролизе ДПН (XV) происходит полный распад его молекулы и образуются аденин, никотинамид, 2 моля рибозы и 2 моля фосфорной кислоты отсюда вытекает суммарный состав кофермента. При ферментативном гидролизе (XV) была получена четвертичная соль (XVI) и, наконец, щелочной гидролиз (XV) дал АДФ. Из этих данных следует, что ДПН представляет собою несимметричный пирофосфат, с одной стороны этерифицированный аденозином. Для установления строения второго радикала, связанного с пирофосфатной системой, нуж- но выяснить строение одного из продуктов распада ДПН (XVI). [c.235]

    Из продуктов полного распада ДПН ясно, что фрагмент, связанный с пирофосфатной системой, содержит никотинамид и одну молекулу рибозы. Ультрафиолетовый спектр продукта ферментативного гидролиза (XVI) ясно указывает на то, что последний является четвертичной пи-ридиниевой солью, а его распад под действием кислот на никотинамид. рибозу и фосфорную кислоту свидетельствует о том, что он является N-гликoзидoм. Отсюда следует, что этот фрагмент представляет собой фосфат (-3-кар боксамидопиридил) рибозида. Место связи остатка фосфорной кислоты в (XVI) было доказано наличием в нем свободной (1-гликольной системы, чем полностью подтверждалось строение (XVI), а тем самым и ДФПН, которому на основе этих данных может соответствовать только формула (XV). Единственный оставшийся невыясненным вопрос о конфигурации гликозидного центра в рибозном остатке, связанном с никотинамидом, был решен прямым синтезом (XVI) (см. ниже). [c.236]

    Нуклеиновые кислоты вместе с белками в очень тесной, неразрывной связи с ними являются носителями Жизни, входят в состав всех живых клеток. Вперэые они выделены из клеточных ядер в 1869 г. В настоящее время изучены их состав, строение и функции. Существую два вида нуклеиновых кислот — рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), отличающиеся друг от друга строением углевода рибозы. В состав обоих кислот входят азотистые основания (урацил, тимин, гуанин, цитозин и аденин, производные пиримидина и пурина, связанные ковалентной связью с полуацетальный гидроксилом в положении 2 циклической формы углевода — рибозы (РНК) или 4-дезоксирибозы (ДНК). При этом пара азотистое основание + углевод образует так называемые нуклеозиды  [c.728]

    В строении молекулы рибофлавина можно обнаружить сродство ее от-деаьных фрагментов со структурными частями различных важнейших биологически активных соединений (314). Так, с витаминами группы фолиевой кислоты (см. с. 459) рибофлавин объединяет общность конденсированных пиримидинового и пиразинового циклов [315]. С тиамином (см. с. 376) рибофлавин объединяет общность пиримидинового цикла (в молекуле рибофлавина он срощен с хиноксалиновым циклом). Нуклеиновые кислоты включают в свою молекулу D-рибозу, а рибофлавин — ее восстановленную форму — D-рибит. о-Диметилбензол с двумя атомами азота в орто-положении входит как в молекулу рибофлавина, так и в молекулу цианокобаламина, витамина Bj., (см. с. 586). [c.546]

    Наличие гуанина в моче человека показано Вейссманом, Бромбергом и Гутманом [207, 208]. Сообщается о выделении из сапропеля аналога витамина Bi2, который содержит гуанин и рибозу [209, 210]. На основании данных ультрафиолетового спектра предположено, что рибоза присоединена к седьмому атому пуринового ядра. По своему строению этот аналог близок витамину Bi2, только вместо бензимидазольного заместителя в нем содержится гуаниновый остаток. Сходный гуанинсодержащий аналог витамина В12 выделен из ферментативной жидкости No ardia [211]. Нуклеотид, в состав которого входят гуанин и фукоза, выделен из овечьего молока [212]. Гуанин обнаружен также в нуклеотидном ферменте (гуанозиндифосфат маннозы), который содержится в дрожжах [213—215]. [c.137]

    В клетках, составляющих живое вещество, содержатся особые высокомолекулярные нуклеиновые кислоты, связанные с белком, видимо, водородными связями. В течение последних десятилетий были изучены состав и строение нуклеиновых кислот и установлена их роль в биосинтезе белка. Ядра клеток содерл<ат дезоксирибонуклеиновую кислоту (ДНК), анализ продуктов гидролитического расщепления которой показал, что это слол ное вещество, содерлощее 1>-дезоксирибозу, фосфорную кислоту и смесь веществ гетероциклической структуры — производных пурина — аденина и гуанина и производных пирами-дина — тимина и цитозина. В плазме же клеток содержатся рибонуклеиновые кислоты (РНК), в составе которых обнарул<ены /З-рибоза, фосфорная кислота и гетероциклы — аденин, гуанин, цитозин и урацил (вместо тимина). [c.264]

    Проекционные фор.мулы Фишера (а) показывают плоскостное изображение пространственного расиоло/Кения атомов Н и групп ОН относительно углеродной цепи молекулы углевода (в данном случае рибозы). Более наглядно строение молекулы изображает 4 ормула б и ее сокращенный вариант в, в которых показаны валентные [c.505]

    Вторым коферментом, близким по строению НАД, является никотинамидадениндинуклеотидфосфат (НАДФ) (XXX), который отличается от НАД лишь наличием фосфорного остатка у С-2 о-рибозы, присоединенной к молекуле аденина. Несмотря на то что НАД и НАДФ близки по строению, эти коферменты не заменяют друг друга, и их роль в биохимических процессах различна 21]. В то время как НАД специфичен для таких дегидрогеназ, действие которых связано с обычной передачей электронов к кислороду в процессе дыхания, НАДФ специфичен для дегидрогеназ, действие которых относится к области биосинтетических восстановлений, например, при образовании глюкозы в процессе темной фазы фотосинтеза Г2Г [c.329]

    По принципу строения различают два типа полинуклеотидов дезоксири-бозы или дезоксирибонуклеиновые кислоты (ДНК) с молекулярным весом до 10 миллионов и рибозы или рибонуклеиновые кислоты (РНК) с молекулярным весом до 300 ООО. [c.436]


Смотреть страницы где упоминается термин Рибоза, строение: [c.339]    [c.349]    [c.328]    [c.11]    [c.583]    [c.186]    [c.202]    [c.81]    [c.313]    [c.266]    [c.113]    [c.521]    [c.521]    [c.681]   
Лекционные опыты и демонстрационные материалы по органической химии (1956) -- [ c.232 , c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Рибоза



© 2025 chem21.info Реклама на сайте